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Observations
REMARK In a connected digraph D, the dijoins are precisely the
arc sets that, when contracted, make the resulting digraph strongly
connected.

PROOF Consider a digraph D ′ obtained by contracting arcs of D. Any
dicut in D ′ is also a dicut of D.
It follows that, contracting a dijoin destroys all the dicuts.

Conversely, consider any arc set J that, when contracted, makes the

resulting digraph D ′ strongly connected. Then J must contain at least

one arc from every dicut of D. So J is a dijoin.

LEMMA A connected bridgeless digraph D contains 2 disjoint
dijoins.

PROOF Let G the underlying graph of D. G is 2-edge connected.
Therefore G admits a strongly connected orientation O.

Let J1 be the arcs of D whose orientations coincide with O, and J2 those

arcs where the orientation differs. Both J1 and J2 intersect any dicut

F = (U, Ū) of D. Indeed, if J1 contains all the arcs in F , so does O,

contradicting that O is strongly connected. If J2 contains all the arcs in

F , then all arcs of O are directed from Ū to U, again a contradiction.



The Lucchesi-Younger Theorem (1978)

Consider a digraph D = (V ,E ) with arc weights w ∈ ZE
+.

The minimum weight of a dijoin is equal to the maximum number
of dicuts such that each arc a belongs to at most wa of them.

Let A be the dicut-arc incidence matrix. This theorem states that
the linear system Ax ≥ 1, x ≥ 0 is totally dual integral.

By Edmonds-Giles 1977, this implies that matrix A is ideal.

This, together with Lehman’s theorem that we proved in Lecture 1,
implies that the dijoin-arc incidence matrix is also ideal. Therefore :

The minimum cardinality τ of a dicut is equal to the maximum
value of a fractional packing of dijoins.

Woodall’s conjecture states that there is an integral packing of
dijoins of value τ .



Woodall’s conjecture
Are there 3 disjoint dijoins in this digraph ?
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Woodall’s conjecture

Are there 3 disjoint dijoins in our example digraph ?

Actually, there are.

But the green dijoin cannot be used in such a packing.

Why can’t the green dijoin be used in a packing ? Not clear...

This points to the difficulty of proving Woodall’s conjecture.

We can prove a weaker statement.



A dijoin and a τ − 1 dijoin

In a digraph D, a k-dijoin is a set of arcs that intersects every
dicut at least k times.

THEOREM Abdi, Cornuejols, Zlatin The arcs of D can be partitioned
into a dijoin and a τ − 1 dijoin, where τ is the smallest size of a
dicut.



Prior work on Woodall’s Conjecture

Frank and Tardos 1984 formulate the conjecture as a common
basis packing problem for two matroids.

Schrijver 1980 ; Feofiloff and Younger 1987 proved the conjecture
for source-sink connected digraphs.

Lee and Wakabayashi 2001 proved the conjecture for series-parallel
digraphs.

Lee and Williams 2006 proved the conjecture for digraphs without
a K5 \ e minor.

Mészáros 2018 proved the conjecture for digraphs that are
(q − 1, 1)-partition conected for q a prime power.

Shepherd and Vetta 2005 consider half-integral packings of dijoins.

Chudnovsky, Edwards, Kim, Scott, Seymour 2016 study a
connectedness condition.



The Weighted Case

Consider a digraph D = (V ,E ) with arc weights w ∈ ZE
+.

Let A be dijoin-arc incidence matrix. By weak LP duality

τw := Min
∑

j wjxj ≥ νw := Max
∑

i yi
Ax ≥ 1 yA ≤ w
x ∈ {0, 1}n y integral.

CONJECTURE Edmonds and Giles 1977 τw = νw .

Counterexample
Schrijver 1980

Harvey, Király, Lau 2011 This is false for any τw ≥ 2.



Reduction to ”almost” regular bipartite digraphs
(Abdi, Cornuejols, Zlatin)

Let D be a digraph where every dicut has size at least τ .

Woodall’s conjecture states that D contains τ disjoint dijoins.

Recall that Woodall’s conjecture is true for τ = 2.

THEOREM
To prove Woodall’s conjecture for τ ≥ 3, it is sufficient to prove it
for digraphs where all nodes are sources or sinks, all sinks have
degree τ , and all sources have degree τ or τ + 1.



Properties of our reduction

Let D be a digraph where every dicut has size at least τ ≥ 3.
We may assume that D has no cut vertex.

We construct a bipartite digraph B where all nodes are sources or
sinks, all sinks have degree τ , and all sources have degree τ or
τ + 1.

1. The digraph D is obtained from B by contracting some of its
arcs.

2. If D is planar, B is also planar.

3. Packing dijoins in D becomes closer to the problem of packing
perfect matchings in B. We will elaborate on this later.

4. Our reduction also works for weighted digraphs D.



The ρ parameter

For v ∈ V , let mv ∈ {0, 1, . . . , τ − 1} such that
mv ≡ |δ+(v)| − |δ−(v)| (mod τ). Let

ρ :=
1

τ

∑
v∈V

mv .

Another property of our reduction :

THEOREM
Our reduction of D into a near-regular bipartite digraph B
preserves the ρ parameter.



How do reduced digraphs look like ?



How do dijoins look like in a packing, if one exists ?



Theorems (Abdi, Cornuejols, Zlatin)

Consider a digraph D where every node is a source or a sink, all
sinks have degree τ , all sources have degree τ or τ + 1 and every
dicut has size at least τ .

Let ρ denote the number of sinks of D minus the number of
sources of D. Note that ρ ≥ 0.

THEOREM
Woodall’s conjecture is true when ρ equals 0, 1 or 2.

For ρ = 0, this is König’s theorem stating that, in any regular
bipartite graph, the edges can be partitioned into perfect
matchings.

THEOREM
Woodall’s conjecture is true when ρ = 3 and τ = 3.



Rounded 1-factors
Consider a digraph D where every node is a source or a sink, all
sinks have degree τ , all sources have degree τ or τ + 1 and every
dicut has size at least τ .

The sources of degree τ + 1 will be called active nodes.

An arc set F of D is a rounded 1-factor if every node of degree τ
in D is incident with exactly one arc of F and every active node in
D is incident with one or two arcs of F .

THEOREM (de Werra 1971).
The arcs of D can be partitioned into τ rounded 1-factors.

Note that rounded 1-factors are not always dijoins, so de Werra’s
theorem does not prove Woodall’s conjecture.

Using De Werra’s theorem, we can show :

THEOREM (Abdi, Cornuejols, Zlatin) If ρ ≤ 1, there exists an
”equitable” packing of τ dijoins.



THEOREM (Abdi, Cornuejols, Zlatin)
For U ⊂ V , let disc(U) denote the number of sinks minus the number of
sources in U.

Let J be a rounded 1-factor and let Q denote its nodes of degree 2. Then
|Q ∩ U| ≥ disc(U) for every dicut δ+(U).

Furthermore J is a dijoin if, and only if,

|Q ∩ U| ≥ 1 + disc(U) for every dicut δ+(U).

REMARK J being a dijoin is solely a function of Q !

Let B be the subsets Q of active nodes such that

|Q|= disc(V )

|Q ∩ U|≥ 1 + disc(U) ∀ dicut δ+(U) of D

THEOREM The following statements hold :

1. B is nonempty (Fujishige 1984).

2. B is the set of bases of a matroid (Frank and Tardos 1984).



Two matroids

THEOREM
The sets of active nodes that have degree 2 in some rounded
1-factor form the bases of a matroid M0.
The sets of active nodes that have degree 2 in rounded 1-factors
that are dijoins form the bases of a matroid M1.



Illustration of the matroid M1



The integer decomposition property

Edmonds (1965) showed that the independent set polytope of a
matroid has the integer decomposition property. Namely, for any

positive integer k , every integral point in kP can be written as the sum

of k integral points in P. As a consequence, we can prove :

THEOREM The active nodes can be partitioned into τ bases of the
matroid M1.



Decomposing into a dijoin and a τ − 1 dijoin

I Let Q1, . . . ,Qτ be disjoint bases of M1.

I Let b := χQ1 + χV .

Claim 1
There exists a perfect b-matching x ∈ ZE

+ : x(δ(v)) = bv ∀v ∈ V .

PROOF We have

|Q1| = disc(V )

|Q1 ∩ U| ≥ disc(U) ∀ dicut δ+(U) of D

Equivalently

b(sources(V )) = b(sinks(V ))

b(sources(U)) ≥ b(sinks(U)) ∀ dicut δ+(U) of D

This is Hall’s condition and the claim follows.



Decomposing into a dijoin and a τ − 1 dijoin

I Let Q1, . . . ,Qτ be disjoint bases of M1.

I Let b := χQ1 + χV .

Claim 1
There exists a perfect b-matching x ∈ ZA

+ : x(δ(v)) = bv for all
v ∈ V .

Since bv = 1 for every sink v , x ∈ {0, 1}E .

Claim 2
x is the incidence vector of a rounded 1-factor J1 ⊆ E with dyad
centers Q1. Moreover, J1 is a dijoin.

This holds because

|Q1| = disc(V )

|Q1 ∩ U| ≥ 1 + disc(U) ∀ dicut δ+(U) of D



Decomposing into a dijoin and a τ − 1 dijoin

Claim 3
E − J1 is a τ − 1 dijoin.

I Let Q ′ := Q2 ∪ · · · ∪ Qτ and b′ := χQ′ + (τ − 1) · χV .

I χE−J1 is a perfect b′-matching.

I Let δ+(U) be a dicut of D. Then

|(E − J1) ∩ δ+(U)|= b′(sources(U))− b′(sinks(U))

=
τ∑

i=2

(
|U ∩ Qi | − disc(U)

)
≥ τ − 1

THEOREM D contains a dijoin and a disjoint τ − 1 dijoin.

Can we make further progress ?



Strongly base orderable matroids

A matroid is strongly base orderable if, for any two bases X , Y ,
there is a bijection π between X \ Y and Y \ X such that, for any
S ⊂ X \ Y , both X∆(S ∪ π(S)) and Y∆(S ∪ π(S)) are bases.

THEOREM The matroid M0 is strongly base orderable.

THEOREM When the matroid M1 is strongly base orderable, D
contains τ disjoint dijoins.

But, this is not always the case. Our proof of Woodall’s conjecture
for ρ = 3 and τ = 3 uses the fact that the only matroid on 6
elements that is not strongly base orderable is the cycle matroid of
K4 (Brualdi 1971).



Denote by K4 the complete graph on 4 vertices and by M(K4) the
cycle matroid of K4.

LEMMA Brualdi 1971 Up to isomorphism, M(K4) is the only
matroid on at most six elements that is not strongly base orderable.

Using matroid machinery, we can prove :

LEMMA Let M be a matroid over 9 elements whose ground set
can be partitioned into bases Q1,Q2,Q3. Then we may choose
Q1,Q2,Q3 such that M|(Qi ∪ Qj) 6∼= M(K4) for some distinct
i , j ∈ {1, 2, 3}.

THEOREM The arc set of a sink-regular (3, 4)-bipartite digraph
such that ρ ≤ 3 can be partitioned into 3 disjoint dijoins.

THEOREM Let D be a digraph where every dicut has size at least
3. Suppose ρ ≤ 3. Then there exist 3 disjoint dijoins.



THEOREM Let τ ≥ 3 be an integer, and D a sink-regular
(τ, τ + 1)-bipartite digraph such that ρ = 3. There exist disjoint
bases Q1, . . . ,Qτ of M1 such that M1|(Q1 ∪ Q2) is strongly base
orderable.

PROOF There exist disjoint bases Q1, . . . ,Qτ of M1. Consider the
matroid M := M1|(Q1 ∪ Q2 ∪ Q3), which has 9 elements and its
ground set is partitioned into bases Q1,Q2,Q3. By the previous
lemma, we may choose Q1,Q2,Q3 such that
M|(Q1 ∪ Q2) 6∼= M(K4), so by Brualdi’s lemma, M|(Q1 ∪ Q2) is
strongly base orderable. Since M1|(Q1 ∪ Q2) = M|(Q1 ∪ Q2), the
disjoint bases Q1,Q2,Q3,Q4, . . . ,Qτ prove the theorem.


