Proof of the Goldberg-Seymour Conjecture – I

11th Cargèse Workshop on Combinatorial Optimization

Guantao Chen

September 20, 2022

Georgia State University, Atlanta, US Supported in part by NSF grant DMS-1855716 and DMS-2154331

Graphs: mulitigraphs – a finite graph which is permitted to have multiple edges, but no loops.

Simple graphs: No multiple edges and no loops

Edge coloring: an assignment of "colors" to the edges of the graph so that no two adjacent edges have the same color a color class = matching

Edge k-coloring: an edge coloring using k colors from the palette [k]

Chromatic index $\chi'(G)$: smallest integer k so that G has an edge k-coloring

Edge-coloring problem (ECP): find an edge coloring of a graph G with $\chi'(G)$.

Holyer, 1981: it is *NP*-hard in general to determine $\chi'(G)$, even when restricted to a simple cubic graph.

Holyer, 1981: it is *NP*-hard in general to determine $\chi'(G)$, even when restricted to a simple cubic graph.

There is no efficient algorithm for solving ECP exactly unless NP = P. Holyer, 1981: it is *NP*-hard in general to determine $\chi'(G)$, even when restricted to a simple cubic graph.

- There is no efficient algorithm for solving ECP exactly unless NP = P.
- The focus of extensive research has been on near-optimal solutions to ECP or good estimates of χ'(G).

A trivial lower bound: $\chi'(G) \ge \Delta(G)$ A trivial lower bound: $\chi'(G) \ge \Delta(G)$

Shannon, 1949: $\chi'(G) \leq \lfloor \frac{3\Delta(G)}{2} \rfloor$ A trivial lower bound: $\chi'(G) \ge \Delta(G)$

Shannon, 1949:

 $\chi'(G) \leq \lfloor \frac{3\Delta(G)}{2} \rfloor$

Vizing, 1964 and Gupta, 1966:

 $\chi'(G) \leq \Delta(G) + \mu(G)$, where $\mu(G)$ is the maximum multiplicity of edges in G.

Vizing's theorem for simple graphs:

If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \chi'(G) + 1$.

Vizing's theorem for simple graphs:

If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \chi'(G) + 1$.

classification of simple graphs:

class 1: $\chi'(G) = \Delta(G)$ class 2: $\chi'(G) = \Delta(G) + 1$

Vizing's theorem for simple graphs:

If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \chi'(G) + 1$.

classification of simple graphs:

class 1: $\chi'(G) = \Delta(G)$ class 2: $\chi'(G) = \Delta(G) + 1$

Central theme of ECP for simple graphs:

the classification problem

$$> \chi'(G) = |E(G)| = 6k$$

$$\chi'(G) = |E(G)| = 6k$$
△(G) = 5k
µ(G) = 3k

Let $\overline{\varphi}$ be a *k*-edge-coloring of a graph *G* and E_{α} be the set of edges colored by color α .

•
$$|E_{\alpha}| \leq \lfloor \frac{|G|}{2} \rfloor$$
, where $|G| = |V(G)|$.

Let $\overline{\varphi}$ be a *k*-edge-coloring of a graph *G* and *E*_{α} be the set of edges colored by color α .

•
$$|E_{\alpha}| \leq \lfloor \frac{|G|}{2} \rfloor$$
, where $|G| = |V(G)|$.

► $|E(G)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \lfloor |G|/2 \rfloor$, hence

Let $\overline{\varphi}$ be a *k*-edge-coloring of a graph *G* and *E*_{α} be the set of edges colored by color α .

•
$$|E_{\alpha}| \leq \lfloor \frac{|G|}{2} \rfloor$$
, where $|G| = |V(G)|$.

► $|E(G)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \lfloor |G|/2 \rfloor$, hence ► $k \ge |E(G)|/\lfloor |G|/2 \rfloor$.

Let $\overline{\varphi}$ be a k-edge-coloring of a graph G and E_{α} be the set of edges colored by color α .

•
$$|E_{\alpha}| \leq \lfloor \frac{|G|}{2} \rfloor$$
, where $|G| = |V(G)|$.

- $|E(G)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \lfloor |G|/2 \rfloor$, hence
- $\blacktriangleright k \geq |E(G)|/\lfloor |G|/2\rfloor.$
- The above inequality indeed holds for every induced subgraph H of G.
- $k \geq \max\left\{\frac{|E(H)|}{\lfloor |H|/2 \rfloor}: \ H \subseteq G, \ |H| \geq 3\right\}.$

Let $\overline{\varphi}$ be a k-edge-coloring of a graph G and E_{α} be the set of edges colored by color α .

•
$$|E_{\alpha}| \leq \lfloor \frac{|G|}{2} \rfloor$$
, where $|G| = |V(G)|$.

- $|E(G)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \lfloor |G|/2 \rfloor$, hence
- $\triangleright k \geq |E(G)|/\lfloor |G|/2\rfloor.$
- The above inequality indeed holds for every induced subgraph H of G.
- $k \ge \max\left\{\frac{|E(H)|}{\lfloor |H|/2 \rfloor}: H \subseteq G, |H| \ge 3\right\}.$
- ▶ When |H| is even, we have $\frac{|E(H)|}{\lfloor |H|/2 \rfloor} \leq \Delta(H) \leq \Delta(G)$.

density

fractional density

$$\omega^*(G) := \max\left\{ \frac{2|E(H)|}{|H|-1} : \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

density

$$\omega(G) := \max\left\{ \left\lceil \frac{2|\mathcal{E}(H)|}{|H|-1} \right\rceil : \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

density

fractional density

$$\omega^*(G) := \max\left\{ \tfrac{2|E(H)|}{|H|-1}: \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

density

$$\omega(G) := \max\left\{ \left\lceil \frac{2|E(H)|}{|H|-1} \right\rceil : \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

An improved lower bound: $\chi'(G) \ge \max \{\Delta(G), \omega(G)\}.$

density

fractional density

$$\omega^*(G) := \max\left\{ \tfrac{2|E(H)|}{|H|-1}: \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

density

$$\omega(G) := \max\left\{ \left\lceil \frac{2|E(H)|}{|H|-1} \right\rceil : \ H \subseteq G, \ |H| \ge 3 \text{ and odd} \right\}$$

An improved lower bound:

 $\chi'(G) \ge \max \left\{ \Delta(G), \omega(G) \right\}.$

How good is this lower bound?

 $\omega(G) \leq \Delta(G) + \mu(G).$ If G is simple, then $\omega(G) \leq \Delta(G) + 1.$

$\omega(G) \leq \Delta(G) + \mu(G).$ If G is simple, then $\omega(G) \leq \Delta(G) + 1.$

• Suppose on the contrary $\frac{2|E|}{|G|-1} > \Delta + \mu$

$\omega(G) \leq \Delta(G) + \mu(G).$ If G is simple, then $\omega(G) \leq \Delta(G) + 1.$

$\omega(G) \leq \Delta(G) + \mu(G).$

If G is simple, then $\omega(G) \leq \Delta(G) + 1$.

$\omega(G) \leq \Delta(G) + \mu(G).$

If G is simple, then $\omega(G) \leq \Delta(G) + 1$.

- Suppose on the contrary $\frac{2|E|}{|G|-1} > \Delta + \mu$
- ► $2|E| > (\Delta + \mu)(|G| 1)$
- ► $2|E| \Delta|G| > \mu(|G| 1) \Delta$
- ► Since $2|E| \Delta|G| \le 0$, we have

$\omega(G) \leq \Delta(G) + \mu(G).$

If G is simple, then $\omega(G) \leq \Delta(G) + 1$.

- Suppose on the contrary $\frac{2|E|}{|G|-1} > \Delta + \mu$
- ► $2|E| > (\Delta + \mu)(|G| 1)$
- ► $2|E| \Delta|G| > \mu(|G| 1) \Delta$
- ► Since $2|E| \Delta|G| \le 0$, we have
- ▶ $\mu(|G|-1) < \Delta$, a contradiction.

Goldberg, 1973 and Seymour, 1974 $\chi'(G) \leq \max{\{\Delta(G) + 1, \omega(G)\}}.$

Goldberg, 1973 and Seymour, 1974 $\chi'(G) \leq \max{\{\Delta(G) + 1, \omega(G)\}}.$

Equivalent form:

If $\chi'(G) \ge \Delta(G) + 2$ then $\chi'(G) = \omega(G)$.

Goldberg, 1973 and Seymour, 1974 $\chi'(G) \leq \max{\{\Delta(G) + 1, \omega(G)\}}.$

Equivalent form:

If $\chi'(G) \ge \Delta(G) + 2$ then $\chi'(G) = \omega(G)$.

Three possibilities for $\chi'(G)$: $\Delta(G)$, $\Delta(G) + 1$, $\omega(G)$.

Goldberg, 1973 and Seymour, 1974 $\chi'(G) \leq \max{\{\Delta(G) + 1, \omega(G)\}}.$

Equivalent form:

If $\chi'(G) \ge \Delta(G) + 2$ then $\chi'(G) = \omega(G)$.

Three possibilities for $\chi'(G)$: $\Delta(G)$, $\Delta(G) + 1$, $\omega(G)$.

an analogy of Vizing's theorem:

There are only two possibilities for $\chi'(G)$: $\Delta(G)$ or max { $\Delta(G) + 1, \omega(G)$ }

Goldberg, 1973 and Seymour, 1974 $\chi'(G) \leq \max{\{\Delta(G) + 1, \omega(G)\}}.$

Equivalent form:

If $\chi'(G) \ge \Delta(G) + 2$ then $\chi'(G) = \omega(G)$.

Three possibilities for $\chi'(G)$: $\Delta(G)$, $\Delta(G) + 1$, $\omega(G)$.

an analogy of Vizing's theorem:

There are only two possibilities for $\chi'(G)$: $\Delta(G)$ or max { $\Delta(G) + 1, \omega(G)$ }

More closer form:

There are only two possibilities for $\chi'(G)$: max { $\Delta(G), \omega(G)$ } or max { $\Delta(G) + 1, \omega(G)$ }
A reformation of ECP:

 $\begin{array}{l} \text{Minimize } \sum_{M \in \mathcal{M}(G)} y_M \\ \text{Subject to: } \sum_{e \in \mathcal{M} \in \mathcal{M}(G)} y_M = 1 \text{ for every } e \in E(G) \text{ and } y_M \in \{0,1\}. \end{array}$

A reformation of ECP:

 $\begin{array}{l} \text{Minimize } \sum_{M \in \mathcal{M}(G)} y_M \\ \text{Subject to: } \sum_{e \in \mathcal{M} \in \mathcal{M}(G)} y_M = 1 \text{ for every } e \in E(G) \text{ and } y_M \in \{0,1\}. \end{array}$

the fractional chromatic index:

$$\begin{split} \chi^*(G) &= \min \sum_{M \in \mathcal{M}(G)} y_M \\ \text{Subject to: } \sum_{e \in \mathcal{M} \in \mathcal{M}(G)} y_M = 1 \text{ for every } e \in E(G) \text{ and } y_M \in [0,1]. \end{split}$$

A reformation of ECP:

 $\begin{array}{l} \text{Minimize } \sum_{M \in \mathcal{M}(G)} y_M \\ \text{Subject to: } \sum_{e \in \mathcal{M} \in \mathcal{M}(G)} y_M = 1 \text{ for every } e \in E(G) \text{ and } y_M \in \{0,1\}. \end{array}$

the fractional chromatic index:

$$\begin{split} \chi^*(G) &= \min \sum_{M \in \mathcal{M}(G)} y_M \\ \text{Subject to: } \sum_{e \in \mathcal{M} \in \mathcal{M}(G)} y_M = 1 \text{ for every } e \in E(G) \text{ and } y_M \in [0,1]. \end{split}$$

Seymour, 1974: $\chi^*(G) = \max \{\Delta(G), \omega^*(G)\}$

round up property of chromatic index

Recall $\omega(G) = \lceil \omega^*(G) \rceil$.

The Goldberg-Seymour conjecture implies $\chi'(G) \leq \chi^*(G) + 1$, so fractional ECP is intimately tied to ECP.

round up property of chromatic index

Recall $\omega(G) = \lceil \omega^*(G) \rceil$.

The Goldberg-Seymour conjecture implies $\chi'(G) \leq \chi^*(G) + 1$, so fractional ECP is intimately tied to ECP.

 χ^* can be computed in polynomial time:

a combination the Padberg-Rao separation algorithm for *b*-matching polyhedra with binary search.

round up property of chromatic index

Recall $\omega(G) = \lceil \omega^*(G) \rceil$.

The Goldberg-Seymour conjecture implies $\chi'(G) \leq \chi^*(G) + 1$, so fractional ECP is intimately tied to ECP.

χ^* can be computed in polynomial time:

a combination the Padberg-Rao separation algorithm for *b*-matching polyhedra with binary search.

Nemhauser and Park, 1991:

Fractional ECP can be solved in polynomial time by an ellipsoid algorithm.

Recall $\omega(G) = \lceil \omega^*(G) \rceil$.

The Goldberg-Seymour conjecture implies $\chi'(G) \leq \chi^*(G) + 1$, so fractional ECP is intimately tied to ECP.

χ^{\ast} can be computed in polynomial time:

a combination the Padberg-Rao separation algorithm for *b*-matching polyhedra with binary search.

Nemhauser and Park, 1991:

Fractional ECP can be solved in polynomial time by an ellipsoid algorithm.

Chen, Zang and Zhao, 2019:

a combinatorial polynomial-time algorithm for finding the density $\omega^*(G)$.

$$\chi'(G) \leq \max\{\Delta(G) + \rho(G), \lceil \omega(G) \rceil\},\$$

where $\rho(G)$ is a positive number depending on G.

 $\triangleright \ \rho(G) = o(\Delta(G)) \ (Kahn, 1996)$

$$\chi'(G) \le \max\{\Delta(G) + \rho(G), \lceil \omega(G) \rceil\},\$$

where $\rho(G)$ is a positive number depending on G.

$$\chi'(G) \leq \max\{\Delta(G) + \rho(G), \lceil \omega(G) \rceil\},\$$

where $\rho(G)$ is a positive number depending on G.

 $\blacktriangleright \ \rho(G) = o(\Delta(G)) \ (\mathsf{Kahn}, \ \mathsf{1996})$

• $\rho(G) \leq \sqrt{\Delta(G)/2}$ (Scheide, 2010; C., Yu and Zang, 2009)

• $\rho(G) \leq \sqrt[3]{\Delta(G)/2}$ (C., Gao, Kim, Postle and Shan, 2018)

$$\chi'(G) \le \max\{\Delta(G) + \rho(G), \lceil \omega(G) \rceil\},\$$

where $\rho(G)$ is a positive number depending on G.

m = 5 (Andersen, 1977; Goldberg, 1973)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- ▶ *m* = 9 (Goldberg, 1984)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- m = 9 (Goldberg, 1984)
- ▶ m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- ▶ *m* = 9 (Goldberg, 1984)
- ▶ m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
- m = 13 (Favrholdt, Stiebitz, and Toft, 2016)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- ▶ *m* = 9 (Goldberg, 1984)
- ▶ m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
- m = 13 (Favrholdt, Stiebitz, and Toft, 2016)
- ▶ *m* = 15 (Scheide, 2010)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- ▶ *m* = 9 (Goldberg, 1984)
- m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
- m = 13 (Favrholdt, Stiebitz, and Toft, 2016)
- ▶ *m* = 15 (Scheide, 2010)
- m = 23 (C., Gao, Kim, Postle and Shan, 2018)

- m = 5 (Andersen, 1977; Goldberg, 1973)
- ▶ *m* = 7 (Andersen, 1977)
- ▶ *m* = 9 (Goldberg, 1984)
- m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
- m = 13 (Favrholdt, Stiebitz, and Toft, 2016)
- ▶ *m* = 15 (Scheide, 2010)
- m = 23 (C., Gao, Kim, Postle and Shan, 2018)
- m = 39 (C., and Jing, 2019)

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), $M \sim M(n, m)$ typically satisfies $\chi'(M) = \max \{\Delta(M), \omega(M)\}$. More specifically,

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), $M \sim M(n, m)$ typically satisfies $\chi'(M) = \max \{\Delta(M), \omega(M)\}$. More specifically,

 if n is even and m := m(n), then χ'(M) = Δ(M) for a typical M ~ M(n, m).

Haxell, Krivelevich, and Kronenberg, 2019:

For a given $m := m(n), M \sim M(n, m)$ typically satisfies $\chi'(M) = \max \{\Delta(M), \omega(M)\}$. More specifically,

If n is even and m := m(n), then χ'(M) = Δ(M) for a typical M ∼ M(n, m).

• for fixed $\epsilon > 0$, if *n* is odd, then a typical $M \sim M(n, m)$ has $\chi'(M) = \Delta(M)$ for $m \leq (1 - \epsilon)n^3$, and $\chi'(M) = \omega(M)$ for $m \geq (1 - \epsilon)n^3$.

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's r-graph conjecture, 1974:

Every *r*-graph *G* satisfies $\chi'(G) \leq r + 1$.

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's r-graph conjecture, 1974:

Every r-graph G satisfies $\chi'(G) \leq r+1$.

small density:

```
If G is an r-graph, then \omega(G) \leq r, and so
max\{\Delta(G) + 1, \omega G\} = r + 1.
```

r-graph: an r-regular (multi-)graph such that

 $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's *r*-graph conjecture, 1974: Every *r*-graph *G* satisfies $\chi'(G) \le r + 1$.

small density:

```
If G is an r-graph, then \omega(G) \leq r, and so
max{\Delta(G) + 1, \omega G} = r + 1.
```

▶ for any $X \subseteq V$ with |X| odd, we have $|\partial(X)| \ge r$

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's *r*-graph conjecture, 1974: Every *r*-graph *G* satisfies $\chi'(G) \le r + 1$.

small density:

If G is an r-graph, then $\omega(G) \leq r$, and so max{ $\Delta(G) + 1, \omega G$ } = r + 1.

▶ for any $X \subseteq V$ with |X| odd, we have $|\partial(X)| \ge r$

$$\triangleright 2|E[X]| + |\partial(X)| = r|X|$$

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's *r*-graph conjecture, 1974: Every *r*-graph *G* satisfies $\chi'(G) \le r + 1$.

small density:

If G is an r-graph, then $\omega(G) \leq r$, and so max{ $\Delta(G) + 1, \omega G$ } = r + 1.

▶ for any $X \subseteq V$ with |X| odd, we have $|\partial(X)| \ge r$

$$\triangleright 2|E[X]| + |\partial(X)| = r|X|$$

▶ $2|E[X]| \le r(|X|-1)$

r-graph:

an *r*-regular (multi-)graph such that $|\partial(X)| \ge r$ for every $X \subseteq V$ with |X| odd.

Seymour's *r*-graph conjecture, 1974: Every *r*-graph *G* satisfies $\chi'(G) \le r + 1$.

small density:

If G is an r-graph, then $\omega(G) \leq r$, and so max{ $\Delta(G) + 1, \omega G$ } = r + 1.

- for any $X \subseteq V$ with |X| odd, we have $|\partial(X)| \ge r$
- $\triangleright \ 2|E[X]| + |\partial(X)| = r|X|$
- ▶ $2|E[X]| \le r(|X|-1)$
- ▶ $2|E[X]|/(|X|-1) \le r$

C., Jing, and Zang, 2019+ If $\chi'(G) \ge \Delta(G) + 2$, then $\chi'(G) = \omega(G)$. C., Jing, and Zang, 2019+ If $\chi'(G) \ge \Delta(G) + 2$, then $\chi'(G) = \omega(G)$.

what is this theorem?

If $\chi'(G) = k + 1 \ge \Delta(G) + 2$, then G has a subgraph H with odd number of vertices such that for every edge $e \in E(H)$, edges H - e can be decomposed into k near-perfect matchings.

C., Jing, and Zang, 2019+ If $\chi'(G) \ge \Delta(G) + 2$, then $\chi'(G) = \omega(G)$.

what is this theorem?

If $\chi'(G) = k + 1 \ge \Delta(G) + 2$, then G has a subgraph H with odd number of vertices such that for every edge $e \in E(H)$, edges H - e can be decomposed into k near-perfect matchings.

 $|H| \le 3$ some ring graphs –cycles with multiple edges

characterizations of such Hs?

others???

graph edge covering

```
edge cover F:
```

an edge set ${\cal F}$ such that each vertex of ${\cal G}$ is incident to at least one edge in ${\cal F},$ i.e.,

```
an edge vector x such that Ax \ge 1 (Cornuéjois)
```

graph edge covering

edge cover F:

an edge set F such that each vertex of G is incident to at least one edge in F, i.e.,

```
an edge vector x such that Ax \ge 1 (Cornuéjois)
```

edge cover packing problem (ECPP):

a coloring of the edges of a graph G using the maximum number of colors in such a way that at each vertex all colors occur.
graph edge covering

edge cover F:

an edge set F such that each vertex of G is incident to at least one edge in F, i.e.,

an edge vector x such that $Ax \ge 1$ (Cornuéjois)

edge cover packing problem (ECPP):

a coloring of the edges of a graph G using the maximum number of colors in such a way that at each vertex all colors occur.

cover index $\xi(G)$: the optimal value of ECPP.

graph edge covering

edge cover F:

an edge set F such that each vertex of G is incident to at least one edge in F, i.e.,

```
an edge vector x such that Ax \ge 1 (Cornuéjois)
```

edge cover packing problem (ECPP):

a coloring of the edges of a graph G using the maximum number of colors in such a way that at each vertex all colors occur.

cover index $\xi(G)$: the optimal value of ECPP.

difficulty:

determining the cover index $\xi(G)$ is *NP*-hard.

For each $U \subseteq V(G)$, let $E^+(U)$ be the set of all edges of G with at least one end in U for each $U \subseteq V$, i.e., $|E^+(U)| = |E(U)| + |\partial(U)|$.

For each $U \subseteq V(G)$, let $E^+(U)$ be the set of all edges of G with at least one end in U for each $U \subseteq V$, i.e., $|E^+(U)| = |E(U)| + |\partial(U)|$.

fractional co-density and co-density:

$$\begin{split} \Phi^*(G) &= \min\left\{\frac{2|E^+(U)|}{|U|+1}: \ U \subseteq V, \ |U| \geq 3 \ \text{and} \ \text{odd}\right\}.\\ \Phi(G) &= \lfloor \Phi^*(G) \rfloor. \end{split}$$

For each $U \subseteq V(G)$, let $E^+(U)$ be the set of all edges of G with at least one end in U for each $U \subseteq V$, i.e., $|E^+(U)| = |E(U)| + |\partial(U)|$.

fractional co-density and co-density:

$$\begin{split} \Phi^*(G) &= \min\left\{\frac{2|E^+(U)|}{|U|+1}: \ U \subseteq V, \ |U| \geq 3 \ \text{and} \ \text{odd}\right\}. \\ \Phi(G) &= \lfloor \Phi^*(G) \rfloor. \end{split}$$

upper bound: $\xi(G) \le \min \{\delta(G), \Phi(G)\}.$ recall: $\chi'(G) \ge \min \{\Delta(G), \omega(G)\}.$ fractional cover index $\xi^*(G)$:

the optimal value of the *fractional edge cover packing problem* (FECPP):

$$\begin{array}{ll} \mathsf{Maximize} & \mathbf{1}^\mathsf{T} \mathbf{x} \\ \mathsf{subject to} & B \mathbf{x} = \mathbf{1} \\ \mathbf{x} \geq \mathbf{0}, \end{array}$$

where B is the edge-edge cover incidence matrix of G.

fractional cover index $\xi^*(G)$:

the optimal value of the *fractional edge cover packing problem* (FECPP):

 $\begin{array}{ll} \mathsf{Maximize} & \mathbf{1}^\mathsf{T} \mathbf{x} \\ \mathsf{subject to} & B\mathbf{x} = \mathbf{1} \\ \mathbf{x} \geq \mathbf{0}, \end{array}$

where B is the edge-edge cover incidence matrix of G.

Zhao, Chen, and Sang, 2020:

 $\xi^*(G) = \min\{\delta(G), \, \Phi^*(G)\}.$

Moreover, there is a combinatorial polynomial-time algorithm for finding the fractional co-density $\Phi^*(G)$ of any multigraph G.

Gupta, 1978: $\xi(G) \ge \min \{\delta(G) - 1, \Phi(G)\}.$

the Goldberg-Seymour conjecture: $\chi'(G) \leq \max \{\Delta(G) + 1, \omega(G)\}.$ **Gupta, 1978:** $\xi(G) \ge \min \{\delta(G) - 1, \Phi(G)\}.$

Gupta, 1978: $\xi(G) \ge \delta(G) - \mu(G)).$ $\xi(G) \ge \min\{\lfloor \frac{7\delta(G)+1}{8} \rfloor, \lfloor \Phi(G) \rfloor\}.$ **Gupta, 1978:** $\xi(G) \ge \min \{\delta(G) - 1, \Phi(G)\}.$

Gupta, 1978: $\xi(G) \ge \delta(G) - \mu(G)).$ $\xi(G) \ge \min\{\lfloor \frac{7\delta(G)+1}{8} \rfloor, \lfloor \Phi(G) \rfloor\}.$

Cao, C., Ding, Jing, and Zang, 2020+: $\xi(G) \ge \min{\{\delta(G) - 1, \Phi(G)\}}$ if $\Phi(G)$ is not integral and $\xi(G) \ge \min{\{\delta(G) - 2, \Phi(G) - 1\}}$ otherwise.

proof: We may assume that G is
$$\theta^{+}(G) = ik$$
 regular.
 $\theta^{+}(G) = k$ $\xrightarrow{G-S(cn_{1})} \chi^{+}(G) \leq k+3$.
let $\underbrace{M_{1}, M_{2}, \cdots, M_{k-1}}_{k \in \mathbb{N}} \underbrace{M_{k}, M_{k+1}}_{M_{k} \in \mathbb{N}} \underbrace{M_{k+s}}_{M_{k} \in \mathbb{N}} \underbrace{M_{k}}_{M_{k} \in \mathbb{N}} \underbrace{M_{k+s}}_{M_{k} \in \mathbb{N}} \underbrace{M_{k+s}}_{M_{k}$

total-coloring:

an assignment of colors to the edges and vertices of G such that no two adjacent edges receive the same color, no two adjacent vertices receive the same color and no edge has the same color as its two endpoints.

total-coloring:

an assignment of colors to the edges and vertices of G such that no two adjacent edges receive the same color, no two adjacent vertices receive the same color and no edge has the same color as its two endpoints.

total-coloring number $\chi''(G)$:

the least number of colors required for a total-coloring of G.

total-coloring:

an assignment of colors to the edges and vertices of G such that no two adjacent edges receive the same color, no two adjacent vertices receive the same color and no edge has the same color as its two endpoints.

total-coloring number $\chi''(G)$:

the least number of colors required for a total-coloring of G.

Behzad's total-coloring conjecture, 1965:

 $\chi''(G) \leq \Delta(G) + 2$ for every simple graph G.

special graph *H*:

 $\chi'(H) = k + 1 \ge \Delta(H) + 2$, H - e is a disjoint union of k near-perfect matchings for any edge $e \in E(H)$, say M_1, \ldots, M_k , which gives a (k + 1)-edge-coloring of H

special graph *H*:

 $\chi'(H) = k + 1 \ge \Delta(H) + 2$, H - e is a disjoint union of k near-perfect matchings for any edge $e \in E(H)$, say M_1, \ldots, M_k , which gives a (k + 1)-edge-coloring of H

a total coloring of H:

for each vertex v, since $k \ge \Delta(H) + 1$, there is a color i not used by edges incident to v, assign i to v.

$$\chi'$$
 vs χ''

Goldberg's total-coloring conjecture, 1984: If $\chi'(G) \ge \Delta(G) + 3$, then $\chi''(G) = \chi'(G)$.

$$\chi'$$
 vs χ''

Goldberg's total-coloring conjecture, 1984: If $\chi'(G) \ge \Delta(G) + 3$, then $\chi''(G) = \chi'(G)$.

Cao, C., Jing, 2020 If $\chi'(G) \ge \max{\Delta(G) + 2, |V(G)| + 1}$, then $\chi''(G) = \chi'(G)$.

$$\chi'$$
 vs χ''

Goldberg's total-coloring conjecture, 1984: If $\chi'(G) \ge \Delta(G) + 3$, then $\chi''(G) = \chi'(G)$.

Cao, C., Jing, 2020 If $\chi'(G) \ge \max{\Delta(G) + 2, |V(G)| + 1}$, then $\chi''(G) = \chi'(G)$.

C., and Hao, 2021+:

If $\chi'(G) \ge \Delta(G) + 10\Delta(G)^{35/36}$, then $\chi''(G) = \chi'(G)$ provided $\Delta(G)$ sufficiently large. So $\chi' \ge \Delta + o(\Delta)$ characterization when χ'(G) = Δ(G) + μ(G) when μ(G) ≥ 2 (Cao,
 C., He, Jing, 2020)

- Characterization when χ'(G) = Δ(G) + μ(G) when μ(G) ≥ 2 (Cao, C., He, Jing, 2020)
- precoloring extension (Cao, C. Jing, Qi, Shan, 2021+)

Classification of (multi)-graphs

A graph G is of the first class if $\chi'(G) = \max{\{\Delta(G), \lceil \omega(G) \rceil\}}$, and of the second class otherwise.

A graph G is of the first class if $\chi'(G) = \max{\{\Delta(G), \lceil \omega(G) \rceil\}}$, and of the second class otherwise.

the 2nd class graphs:

 $\chi'(G) = \Delta(G) + 1$ and $\omega(G) \leq \Delta(G)$. The Petersen graph belongs to the 2nd class.

A graph G is of the first class if $\chi'(G) = \max{\{\Delta(G), \lceil \omega(G) \rceil\}}$, and of the second class otherwise.

the 2nd class graphs:

 $\chi'(G) = \Delta(G) + 1$ and $\omega(G) \le \Delta(G)$. The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984: If $\omega(G) < \Delta(G)$, then $\chi'(G) = \Delta(G)$.

A graph G is of the first class if $\chi'(G) = \max{\{\Delta(G), \lceil \omega(G) \rceil\}}$, and of the second class otherwise.

the 2nd class graphs:

 $\chi'(G) = \Delta(G) + 1$ and $\omega(G) \leq \Delta(G)$. The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984: If $\omega(G) < \Delta(G)$, then $\chi'(G) = \Delta(G)$. the 2nd class graphs (Assuming Goldberg's conjecture): $\chi'(G) = \Delta(G) + 1$ and $\omega(G) = \Delta(G)$.

A simple graph G is of the first class if every Δ -vertex is adjacent to at most two other Δ -vertices ($\Delta(G_{\Delta}) \leq 2$)

A simple graph G is of the first class if every Δ -vertex is adjacent to at most two other Δ -vertices ($\Delta(G_{\Delta}) \leq 2$)

Cao, C., Jing, and Shan (a series of papers), 2020+:

A simple graph G is of the first class if every Δ -vertex is adjacent to at most two other Δ -vertices ($\Delta(G_{\Delta}) \leq 2$)

Cao, C., Jing, and Shan (a series of papers), 2020+:

Confirmed Hilton's core conjecture.

A simple graph G is of the first class if every Δ -vertex is adjacent to at most two other Δ -vertices ($\Delta(G_{\Delta}) \leq 2$)

Cao, C., Jing, and Shan (a series of papers), 2020+:

- Confirmed Hilton's core conjecture.
- If G is a critical simple graph with δ(G_Δ) ≤ 2, then G is of the first class.

A simple graph G is of the first class if every Δ -vertex is adjacent to at most two other Δ -vertices ($\Delta(G_{\Delta}) \leq 2$)

Cao, C., Jing, and Shan (a series of papers), 2020+:

- Confirmed Hilton's core conjecture.
- If G is a critical simple graph with δ(G_Δ) ≤ 2, then G is of the first class.
- If G is a critical simple graph with $\delta(G_{\Delta}) \leq k$ and $\Delta(G) \geq \frac{2n}{3} + \frac{3k}{2}$, then G is of the first class.

Hilton's overfull conjecture, 1986

All simple graphs G with $\Delta(G) > |G|/3$ is of the first class with only one exception when $\Delta(G) = 3$.

Hilton's overfull conjecture, 1986

All simple graphs G with $\Delta(G) > |G|/3$ is of the first class with only one exception when $\Delta(G) = 3$.

Plantholt, 2004:

Suppose the order n := |G| is even. if $\delta(G) \ge \sqrt{7n/3} \approx 0.8819n$, then G is of the first class, and the overfull conjecture holds for graphs with small minimum degree and large maximum degree.

Hilton's overfull conjecture, 1986

All simple graphs G with $\Delta(G) > |G|/3$ is of the first class with only one exception when $\Delta(G) = 3$.

Plantholt, 2004:

Suppose the order n := |G| is even. if $\delta(G) \ge \sqrt{7n/3} \approx 0.8819n$, then G is of the first class, and the overfull conjecture holds for graphs with small minimum degree and large maximum degree.

Cao, C., Jing, Shan, 2021+:

If $\Delta(G) - 7\delta(G)/4 \ge (3n - 17)/4$, then G is of the first class. So for $0 < \epsilon < 1/7$, if $\delta(G) \le \epsilon n$ and $\Delta \ge (3n - 17 + 7\epsilon n)/4$, then G is of the first class.

double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 6$

double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 6$

the generalized Berge-Fulkerson conjecture (Seymour), 1979: if G is an r-graph, then G contains 2r perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 2r$.
double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 6$

the generalized Berge-Fulkerson conjecture (Seymour), 1979: if G is an r-graph, then G contains 2r perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 2r$.

double regular graph conjecture: ?

For any regular graph G, its double graph 2G is of the first class.

double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 6$

the generalized Berge-Fulkerson conjecture (Seymour), 1979: if G is an r-graph, then G contains 2r perfect matchings such that each edge is in exactly two of them, which is equivalent to saying that $\chi'(2G) = 2r$.

double regular graph conjecture:

For any regular graph G, its double graph 2G is of the first class.

double graph conjecture:

2G is of the first class for any graph G.

Seymour's exact conjecture, 1979

All planar graphs are of the first class.

