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Graphs and simple graphs

Graphs: mulitigraphs — a finite graph which is permitted to have multiple
edges, but no loops.

Simple graphs: No multiple edges and no loops



Edge coloring - basic

Edge coloring: an assignment of “colors” to
the edges of the graph so that no two
adjacent edges have the same color

a color class = matching

Edge k-coloring: an edge coloring using k
colors from the palette [K]

Chromatic index x’(G): smallest integer k
so that G has an edge k-coloring

Edge-coloring problem (ECP): find an edge
coloring of a graph G with \/(G).



Holyer, 1981: it is NP-hard in general to determine x’(G), even when
restricted to a simple cubic graph.
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Hardness of ECP

Holyer, 1981: it is NP-hard in general to determine x'(G), even when
restricted to a simple cubic graph.

» There is no efficient algorithm for solving ECP exactly unless
NP = P.
» The focus of extensive research has been on near-optimal solutions

to ECP or good estimates of x/(G).
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classical bounds

A trivial lower bound:
X'(G) > A(G)
Shannon, 1949:
X'(6) < [359)

Vizing, 1964 and Gupta, 1966:
X' (G) < A(G) + 1(G), where p(G) is the maximum multiplicity of
edges in G.



Vizing’s theorem for simple graphs:
If G is a simple graph, then A(G) < x/(G) < ¥'(G) + 1.
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simple graphs

Vizing's theorem for simple graphs:
If G is a simple graph, then A(G) < x/(G) < X/(G) + 1.

classification of simple graphs:
class 11 x(G) = A(G)
class 2: ¥(G) = A(G)+1

Central theme of ECP for simple graphs:
the classification problem
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gaps for multigraphs

> 4(G) = 3k
> A(G) +u(G) =8k

2k



gaps for multigraphs

X'(G) = |[E(G)| = 6k
3k K A(G) =5k
u(G) = 3k

A(G) + u(G) = 8k
3A(G)/2 =7.5k.
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Let  be a k-edge-coloring of a graph G and E, be the set of edges
colored by color a.

> [Ea| < [151], where |G] = |V(G)].
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another lower bound

Let © be a k-edge-coloring of a graph G and E, be the set of edges
colored by color a.

> |E.| < |8, where |G| = |V(G)|.

> |E(G)| = Sacqui |Eal < k- [/G1/2], hence

> k= |E(G)I/LIG]/2].

» The above inequality indeed holds for every induced subgraph H of
G.

E(H)]
> k= max{{E: HC G, M 23},

» When |H| is even, we have B < A(H) < A(G).




fractional density

W*(G) = max{ﬂlHﬂl_ﬂlﬂz HC G, |H| >3 and odd}

density
w(G) = max{HHﬂl_ﬂH . HC G, |H| >3 and odd}
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density

fractional density

w*(G) = max{2'E<H)' . HC G, |H| >3 and odd}

[HI—-1
density
w(G) = max{[%] . HC G, |H| >3 and odd}

An improved lower bound:
X'(G) = max{A(G),w(G)} .

How good is this lower bound?
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w(G) < A(G) + p(G6).
If G is simple, then w(G) < A(G) +1

» Suppose on the contrary |G| 1 >A+p
> 2[E[> (A +p)(lG] - 1)



an upper bound of density

w(G) < A(G) + u(6).
If G is simple, then w(G) < A(G) + 1.

2|E|
|1>A+u

» Suppose on the contrary [GI—
> 2[E| > (A+p)(I6] = 1)

> 2|E| - A|G] > p(|G| - 1) — A



an upper bound of density

w(G) < A(G) + u(G).
If G is simple, then w(G) < A(G) + 1.

» Suppose on the contrary |é‘|E—‘1 >A+p

> 2[E[> (A +p)(lG] - 1)
» 2|E| — AIG| > p(|G] -1)—A
» Since 2|E| — A|G| <0, we have




an upper bound of density

w(G) < A(G) + u(G).
If G is simple, then w(G) < A(G) + 1.

Suppose on the contrary |é‘|E—‘1 >A+p

| 2

> 2/E| > (A+p)(|G] —1)

> 2|E| - A|G] > p(|G| - 1) — A
| 2

| 2

Since 2|E| — A|G| < 0, we have
u(|G| — 1) < A, a contradiction.



Goldberg, 1973 and Seymour, 1974
X' (G) < max{A(G) + 1,w(G)}.
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the Goldberg-Seymour conjecture

Goldberg, 1973 and Seymour, 1974
X' (G) < max{A(G) + 1,w(G)}.

Equivalent form:
If x'(G) > A(G) + 2 then x/(G) = w(G).

Three possibilities for x/(G):
A(G), A(G) + 1, w(G).

an analogy of Vizing's theorem:

There are only two possibilities for x/(G):
A(G) or max{A(G) + 1,w(G)}

More closer form:

There are only two possibilities for x/(G):
max {A(G),w(G)} or max {A(G) + 1,w(G)}
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Let M(G) denote the set of all matchings of G.
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fractional chromatic index

Let M(G) denote the set of all matchings of G.

A reformation of ECP:

Minimize >y vq(g) YM

Subject to: ZeeMeM(G) ym = 1 for every e € E(G) and yy € {0,1}.
the fractional chromatic index:

X*(G) = min ZMEM(G) Ym

Subject to: 3° e e () ym = 1 for every e € E(G) and yy € [0,1].

Seymour, 1974:
X"(G) = max{A(G),w"(G)}
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round up property of chromatic index

Recall w(G) = [w*(G)].
The Goldberg-Seymour conjecture implies x'(G) < x*(G) + 1, so
fractional ECP is intimately tied to ECP.
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round up property of chromatic index

Recall w(G) = [w*(G)].
The Goldberg-Seymour conjecture implies x'(G) < x*(G) + 1, so
fractional ECP is intimately tied to ECP.

x* can be computed in polynomial time:
a combination the Padberg-Rao separation algorithm for b-matching
polyhedra with binary search.

Nemhauser and Park, 1991:
Fractional ECP can be solved in polynomial time by an ellipsoid
algorithm.

Chen, Zang and Zhao, 2019:
a combinatorial polynomial-time algorithm for finding the density

w*(G).
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In the form
X'(G) < max{A(G) + p(G), [w(G)1},

1
where p(G) is a positive number depending on G.

> 0(G) = o(A(G)) (Kahn, 1996)
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> p(G) = o(A(G)) (Kahn, 1996)
» p(G) < \/A(G)/2 (Scheide, 2010; C., Yu and Zang, 2009)
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Approximate results

In the form
X'(G) < max{A(G) + p(G), [w(G)1},

where p(G) is a positive number depending on G.

< /A(G)/2 (Schelde 2010; C., Yu and Zang, 2009)
< JA(G)/2 (C., Gao, Kim, Postle and Shan, 2018)
< JA(G)/4 (C., and Jing, 2019)
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an equivalent conjecture

A stronger version of Jakobsen’s conjecture, 1975

X'(G) < -5 - A(G) 4+ Z=3 for every odd integer m > 3.

1

» m =5 (Andersen, 1977; Goldberg, 1973)
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an equivalent conjecture

A stronger version of Jakobsen’s conjecture, 1975

X'(G) < -5 - A(G) 4+ Z=3 for every odd integer m > 3.

— m

» m =5 (Andersen, 1977; Goldberg, 1973)

» m =7 (Andersen, 1977)

» m =9 (Goldberg, 1984)

» m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
» m = 13 (Favrholdt, Stiebitz, and Toft, 2016)

» m = 15 (Scheide, 2010)

» m =23 (C., Gao, Kim, Postle and Shan, 2018)



an equivalent conjecture

A stronger version of Jakobsen’s conjecture, 1975

X'(G) < -5 - A(G) 4+ Z=3 for every odd integer m > 3.
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(Andersen, 1977)

(Goldberg, 1984)

(Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)
(Favrholdt, Stiebitz, and Toft, 2016)

(Scheide, 2010)
(
(

C., Gao, Kim, Postle and Shan, 2018)
C., and Jing, 2019)
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random graphs

Let M(n, m) be the probability space consisting of all loopless
multigraphs with n vertices and m edges, in which m pairs from [n] are
chosen independently at random with repetitions.
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random graphs

Let M(n, m) be the probability space consisting of all loopless
multigraphs with n vertices and m edges, in which m pairs from [n] are
chosen independently at random with repetitions.

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), M ~ M(n, m) typically satisfies
X' (M) = max {A(M),w(M)}. More specifically,

» if nis even and m := m(n), then x'(M) = A(M) for a typical
M ~ M(n, m).

» for fixed ¢ > 0, if nis odd, then a typical M ~ M(n, m) has
X' (M) = A(M) for m < (1 — €)n?, and x'(M) = w(M) for
m>(1—e¢)nd.

15



r-graph:
an r-regular (multi-)graph such that
[O(X)| > r for every X C V with | X| odd.
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r-graphs

r-graph:
an r-regular (multi-)graph such that
|0(X)| > r for every X C V with | X| odd.

Seymour’s r-graph conjecture, 1974:
Every r-graph G satisfies x'(G) < r + 1.

small density:
If G is an r-graph, then w(G) < r, and so
max{A(G) + 1L,wG} =r + 1.

» for any X C V with |X| odd, we have |0(X)| > r

> 2|E[X]| +9(X)| = r|X| ==
> 2|E[X]| < r(|IX] - 1) 7

> 20E[X])/(IX| =1) < r
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C., Jing, and Zang, 2019+
If X'(G) > A(G) + 2, then X'(G) = w(G).
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the main theorem

C., Jing, and Zang, 2019+
If x'(G) > A(G) + 2, then x'(G) = w(G).

what is this theorem?

If X'(G) =k+ 1> A(G) + 2, then G has a subgraph H with odd
number of vertices such that

for every edge e € E(H), edges H — e can be decomposed into k
near-perfect matchings.
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the main theorem

C., Jing, and Zang, 2019+
If x'(G) > A(G) + 2, then x'(G) = w(G).

what is this theorem?

If X'(G) =k+ 1> A(G) + 2, then G has a subgraph H with odd
number of vertices such that

for every edge e € E(H), edges H — e can be decomposed into k
near-perfect matchings.

characterizations of such Hs?
|H| <3 S

some ring graphs —cycles with multiple edges v ¥
others?77?
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graph edge covering

edge cover F:

an edge set F such that each vertex of G is incident to at least one
edge in F, i.e.,

an edge vector x such that Ax > 1 (Cornuéjois)
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graph edge covering

edge cover F:

an edge set F such that each vertex of G is incident to at least one
edge in F, i.e.,
an edge vector x such that Ax > 1 (Cornuéjois)

edge cover packing problem (ECPP):

a coloring of the edges of a graph G using the maximum number of
colors in such a way that at each vertex all colors occur.

cover index &(G):
the optimal value of ECPP.

difficulty:
determining the cover index &(G) is NP-hard.
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lower bounds

For each U C V/(G), let ET(U) be the set of all edges of G with at least
one end in U for each U C V, ie.,, |[ET(U)| = |E(V)| + |0(V)|.

Nqu}Lgl'_ﬂ &lj‘)
u L (over U.
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lower bounds
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lower bounds

For each U C V/(G), let ET(U) be the set of all edges of G with at least
one end in U for each U C V, ie.,, |[ET(U)| = |E(V)| + |0(V)|.
fractional co-density and co-density:

. +
®*(G) = m|n{2‘ﬁj|${)| L UCV, [U| >3 and odd}.

(G) = [0*(6)).

upper bound:
§(G) < min {4(G), (G)}.

recall: I/

X'(G) = min {A(G),w(G)}.
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fractional cover index

fractional cover index £*(G):

the optimal value of the fractional edge cover packing problem

(FECPP):
Maximize 17x
subject to Bx=1
x>0,

where B is the edge-edge cover incidence matrix of G.
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fractional cover index

fractional cover index £*(G):

the optimal value of the fractional edge cover packing problem

(FECPP):
Maximize 17x
subject to Bx=1
x>0,

where B is the edge-edge cover incidence matrix of G.

Zhao, Chen, and Sang, 2020:

§7(G) = min{6(G), ®*(G)}.

Moreover, there is a combinatorial polynomial-time algorithm for
finding the fractional co-density ®*(G) of any multigraph G.

20



Gupta’s cover index conjecture

Gupta, 1978:
&(G) = min{6(G) —1,9(G)}.

the Goldberg-Seymour conjecture:

X' (G) < max{A(G) + 1,w(G)}.
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Gupta’s cover index conjecture

Gupta, 1978:
&(G) = min{6(G) —1,9(G)}.

Gupta, 1978:
§(G) 2 0(G) — ( ))-
£(G) > min{ [ ZH ], |0(6) ]}

5"’3
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Gupta’s cover index conjecture

Gupta, 1978:
&(G) = min{6(G) —1,9(G)}.

Gupta, 1978:
£(G) > 8(G) — ( ).
£(G) = min{| & | |o(G)]}.

Cao, C., Ding, Jing, and Zang, 2020+:
&(G) > min{o(G) — 1, &(G)} if ®(G) is not integral and
&(G) > min{o(G) — 2, &(G) — 1} otherwise.
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total-coloring number

total-coloring:

an assignment of colors to the edges and vertices of G such that no two
adjacent edges receive the same color, no two adjacent vertices receive
the same color and no edge has the same color as its two endpoints.
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total-coloring number

total-coloring:

an assignment of colors to the edges and vertices of G such that no two
adjacent edges receive the same color, no two adjacent vertices receive
the same color and no edge has the same color as its two endpoints.

total-coloring number " (G):

the least number of colors required for a total-coloring of G.
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total-coloring number

total-coloring:

an assignment of colors to the edges and vertices of G such that no two
adjacent edges receive the same color, no two adjacent vertices receive
the same color and no edge has the same color as its two endpoints.

total-coloring number " (G):

the least number of colors required for a total-coloring of G.

Behzad’s total-coloring conjecture, 1965:
X"(G) < A(G) + 2 for every simple graph G.
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special graph H

special graph H:

X' (H)=k+1>A(H)+2, H— e is a disjoint union of k near-perfect
matchings for any edge e € E(H), say My, ..., My, which gives a

(k + 1)-edge-coloring of H
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special graph H

special graph H:
X' (H)=k+1>A(H)+2, H— e is a disjoint union of k near-perfect
matchings for any edge e € E(H), say My, ..., My, which gives a

(k + 1)-edge-coloring of H

a total coloring of H:

for each vertex v, since k > A(H) + 1, there is a color i not used by
edges incident to v, assign i to v.
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Goldberg’s total-coloring conjecture, 1984:
If X'(G) > A(G) + 3, then X"(G) = x'(G).
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Goldberg’s total-coloring conjecture, 1984:
If X'(G) > A(G) + 3, then X"(G) = x'(G).

Cao, C., Jing, 2020
If X'(G) > max{A(G) + 2, |V(G)| + 1}, then X"(G) = X'(G).
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X/ VS XI/

Goldberg’s total-coloring conjecture, 1984:
If x'(G) > A(G) + 3, then X"/ (G) = x'(G).

Cao, C., Jing, 2020

If X'(G) > max{A(G) +2,|V(G)| + 1}, then x"(G) = X'(G).

C., and Hao, 2021+:

If X'(G) > A(G) 4+ 10A(G)3/3, then x”(G) = x/(G) provided A(G)
sufficiently large. So - ‘xl > A4olh)
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» characterization when x'(G) = A(G) + p(G) when p(G) > 2 (Cao,
C., He, Jing, 2020)
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» characterization when x'(G) = A(G) + p(G) when p(G) > 2 (Cao,
C., He, Jing, 2020)

» precoloring extension (Cao, C. Jing, Qi, Shan, 2021+)
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Classification of (multi)-graphs




A new classification:

A graph G is of the first class if x'(G) = max{A(G), [w(G)]}, and of
the second class otherwise.
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Classification

A new classification:
A graph G is of the first class if x'(G) = max{A(G), [w(G)]}, and of
the second class otherwise.

the 2nd class graphs:
X' (G) = A(G) + 1 and w(G) < A(G).
The Petersen graph belongs to the 2nd class.
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Classification

A new classification:
A graph G is of the first class if x'(G) = max{A(G), [w(G)]}, and of
the second class otherwise.

the 2nd class graphs:
X' (G) = A(G) + 1 and w(G) < A(G).
The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984:
If w(G) < A(G), then x'(G) = A(G).

26



Classification

A new classification:
A graph G is of the first class if x'(G) = max{A(G), [w(G)]}, and of
the second class otherwise.

the 2nd class graphs:
X' (G) = A(G) + 1 and w(G) < A(G).
The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984:
If w(G) < A(G), then x'(G) = A(G).

the 2nd class graphs (Assuming Goldberg’s conjecture):
X' (G) = A(G) + 1 and w(G) = A(G).
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the core conjecture

Hilton’s core conjecture, 1991:

A simple graph G is of the first class if every A-vertex is adjacent to at
most two other A-vertices (A(Gp) < 2)
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the core conjecture

Hilton’s core conjecture, 1991:

A simple graph G is of the first class if every A-vertex is adjacent to at
most two other A-vertices (A(Gp) < 2)

Cao, C., Jing, and Shan (a series of papers), 2020+:
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A simple graph G is of the first class if every A-vertex is adjacent to at
most two other A-vertices (A(Gp) < 2)

Cao, C., Jing, and Shan (a series of papers), 2020+:

» Confirmed Hilton's core conjecture.
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Hilton’s core conjecture, 1991:

A simple graph G is of the first class if every A-vertex is adjacent to at
most two other A-vertices (A(Gp) < 2)

Cao, C., Jing, and Shan (a series of papers), 2020+:

» Confirmed Hilton's core conjecture.

» If G is a critical simple graph with 6(Ga) < 2, then G is of the first
class.
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the core conjecture

Hilton’s core conjecture, 1991:
A simple graph G is of the first class if every A-vertex is adjacent to at
most two other A-vertices (A(Gp) < 2)

Cao, C., Jing, and Shan (a series of papers), 2020+:

» Confirmed Hilton's core conjecture.

» If G is a critical simple graph with 6(Ga) < 2, then G is of the first
class.

» If G is a critical simple graph with 6(Ga) < k and A(G) > % + %
then G is of the first class.

27



the overfull conjecture

Hilton’s overfull conjecture, 1986
All simple graphs G with A(G) > |G|/3 is of the first class with only
one exception when A(G) = 3.
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the overfull conjecture

Hilton’s overfull conjecture, 1986

All simple graphs G with A(G) > |G|/3 is of the first class with only
one exception when A(G) = 3.

Plantholt, 2004:

Suppose the order n := |G| is even.

if (G) > \/7n/3 =~ 0.8819n, then G is of the first class, and

the overfull conjecture holds for graphs with small minimum degree and
large maximum degree.

28



the overfull conjecture

Hilton’s overfull conjecture, 1986
All simple graphs G with A(G) > |G|/3 is of the first class with only
one exception when A(G) = 3.

Plantholt, 2004:

Suppose the order n := |G| is even.

if (G) > \/7n/3 =~ 0.8819n, then G is of the first class, and

the overfull conjecture holds for graphs with small minimum degree and
large maximum degree.

Cao, C., Jing, Shan, 2021+:

If A(G) —75(G)/4 > (3n—17)/4, then G is of the first class. So

for 0 < e <1/7,if 6(G) <enand A > (3n— 17 + 7en)/4, then G is of
the first class.
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double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings
such that each edge is in exactly two of them, which is equivalent to
saying that x/(2G) =6
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double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings
such that each edge is in exactly two of them, which is equivalent to
saying that x/(2G) =6

the generalized Berge-Fulkerson conjecture (Seymour), 1979:

if G is an r-graph, then G contains 2r perfect matchings such that each
edge is in exactly two of them, which is equivalent to saying that
X' (2G) = 2r.
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double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings
such that each edge is in exactly two of them, which is equivalent to
saying that x/(2G) =6

the generalized Berge-Fulkerson conjecture (Seymour), 1979:
if G is an r-graph, then G contains 2r perfect matchings such that each

edge is in exactly two of them, which is equivalent to saying that
X' (2G) = 2r.

double regular graph conjecture: 7

For any regular graph G, its double graph 2G is of the first class.
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double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings
such that each edge is in exactly two of them, which is equivalent to
saying that x/(2G) =6

the generalized Berge-Fulkerson conjecture (Seymour), 1979:
if G is an r-graph, then G contains 2r perfect matchings such that each

edge is in exactly two of them, which is equivalent to saying that
X' (2G) = 2r.

double regular graph conjecture:
For any regular graph G, its double graph 2G is of the first class.

double graph conjecture:
2G is of the first class for any graph G.

29



Seymour’s exact conjecture, 1979
All planar graphs are of the first class.
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