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Graphs and simple graphs

Graphs: mulitigraphs – a finite graph which is permitted to have multiple

edges, but no loops.

Simple graphs: No multiple edges and no loops
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Edge coloring - basic

Edge coloring: an assignment of “colors” to

the edges of the graph so that no two

adjacent edges have the same color

a color class = matching

Edge k-coloring: an edge coloring using k

colors from the palette [k]

Chromatic index χ′(G ): smallest integer k

so that G has an edge k-coloring

Edge-coloring problem (ECP): find an edge

coloring of a graph G with χ′(G ).
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Hardness of ECP

Holyer, 1981: it is NP-hard in general to determine χ′(G ), even when

restricted to a simple cubic graph.

▶ There is no efficient algorithm for solving ECP exactly unless

NP = P.

▶ The focus of extensive research has been on near-optimal solutions

to ECP or good estimates of χ′(G ).

3



Hardness of ECP

Holyer, 1981: it is NP-hard in general to determine χ′(G ), even when

restricted to a simple cubic graph.

▶ There is no efficient algorithm for solving ECP exactly unless

NP = P.

▶ The focus of extensive research has been on near-optimal solutions

to ECP or good estimates of χ′(G ).

3



Hardness of ECP

Holyer, 1981: it is NP-hard in general to determine χ′(G ), even when

restricted to a simple cubic graph.

▶ There is no efficient algorithm for solving ECP exactly unless

NP = P.

▶ The focus of extensive research has been on near-optimal solutions

to ECP or good estimates of χ′(G ).

3



classical bounds

A trivial lower bound:

χ′(G ) ≥ ∆(G )

Shannon, 1949:

χ′(G ) ≤ ⌊ 3∆(G)
2 ⌋

Vizing, 1964 and Gupta, 1966:

χ′(G ) ≤ ∆(G ) + µ(G ), where µ(G ) is the maximum multiplicity of

edges in G .
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simple graphs

Vizing’s theorem for simple graphs:

If G is a simple graph, then ∆(G ) ≤ χ′(G ) ≤ χ′(G ) + 1.

classification of simple graphs:

class 1: χ′(G ) = ∆(G )

class 2: χ′(G ) = ∆(G ) + 1

Central theme of ECP for simple graphs:

the classification problem
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gaps for multigraphs

▶ χ′(G ) = |E (G )| = 6k

▶ ∆(G ) = 5k

▶ µ(G ) = 3k

▶ ∆(G ) + µ(G ) = 8k

▶ 3∆(G )/2 = 7.5k.
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another lower bound

Let φ be a k-edge-coloring of a graph G and Eα be the set of edges

colored by color α.

▶ |Eα| ≤ ⌊ |G |
2 ⌋, where |G | = |V (G )|.

▶ |E (G )| =
∑

α∈[1,k] |Eα| ≤ k · ⌊|G |/2⌋, hence
▶ k ≥ |E (G )|/⌊|G |/2⌋.
▶ The above inequality indeed holds for every induced subgraph H of

G .

▶ k ≥ max
{

|E(H)|
⌊|H|/2⌋ : H ⊆ G , |H| ≥ 3

}
.

▶ When |H| is even, we have |E(H)|
⌊|H|/2⌋ ≤ ∆(H) ≤ ∆(G ).
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density

fractional density

ω∗(G ) := max
{

2|E(H)|
|H|−1 : H ⊆ G , |H| ≥ 3 and odd

}
density

ω(G ) := max
{⌈

2|E(H)|
|H|−1

⌉
: H ⊆ G , |H| ≥ 3 and odd

}

An improved lower bound:

χ′(G ) ≥ max {∆(G ), ω(G )} .

How good is this lower bound?
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an upper bound of density

ω(G ) ≤ ∆(G ) + µ(G ).

If G is simple, then ω(G ) ≤ ∆(G ) + 1.

▶ Suppose on the contrary 2|E |
|G |−1 > ∆+ µ

▶ 2|E | > (∆ + µ)(|G | − 1)

▶ 2|E | −∆|G | > µ(|G | − 1)−∆

▶ Since 2|E | −∆|G | ≤ 0, we have

▶ µ(|G | − 1) < ∆, a contradiction.
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the Goldberg-Seymour conjecture

Goldberg, 1973 and Seymour, 1974

χ′(G ) ≤ max {∆(G ) + 1, ω(G )}.

Equivalent form:

If χ′(G ) ≥ ∆(G ) + 2 then χ′(G ) = ω(G ).

Three possibilities for χ′(G ):

∆(G ), ∆(G ) + 1, ω(G ).

an analogy of Vizing’s theorem:

There are only two possibilities for χ′(G ):

∆(G ) or max {∆(G ) + 1, ω(G )}

More closer form:

There are only two possibilities for χ′(G ):

max {∆(G ), ω(G )} or max {∆(G ) + 1, ω(G )}
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fractional chromatic index

Let M(G ) denote the set of all matchings of G .

A reformation of ECP:

Minimize
∑

M∈M(G) yM
Subject to:

∑
e∈M∈M(G) yM = 1 for every e ∈ E (G ) and yM ∈ {0, 1}.

the fractional chromatic index:

χ∗(G ) = min
∑

M∈M(G) yM
Subject to:

∑
e∈M∈M(G) yM = 1 for every e ∈ E (G ) and yM ∈ [0, 1].

Seymour, 1974:

χ∗(G ) = max {∆(G ), ω∗(G )}
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round up property of chromatic index

Recall ω(G ) = ⌈ω∗(G )⌉.
The Goldberg-Seymour conjecture implies χ′(G ) ≤ χ∗(G ) + 1, so

fractional ECP is intimately tied to ECP.

χ∗ can be computed in polynomial time:

a combination the Padberg-Rao separation algorithm for b-matching

polyhedra with binary search.

Nemhauser and Park, 1991:

Fractional ECP can be solved in polynomial time by an ellipsoid

algorithm.

Chen, Zang and Zhao, 2019:

a combinatorial polynomial-time algorithm for finding the density

ω∗(G ).
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Approximate results

In the form

χ′(G ) ≤ max{∆(G ) + ρ(G ), ⌈ω(G )⌉},

where ρ(G ) is a positive number depending on G .

▶ ρ(G ) = o(∆(G )) (Kahn, 1996)

▶ ρ(G ) ≤
√

∆(G )/2 (Scheide, 2010; C., Yu and Zang, 2009)

▶ ρ(G ) ≤ 3
√
∆(G )/2 (C., Gao, Kim, Postle and Shan, 2018)

▶ ρ(G ) ≤ 3
√
∆(G )/4 (C., and Jing, 2019)
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an equivalent conjecture

A stronger version of Jakobsen’s conjecture, 1975

χ′(G ) ≤ m
m−1 ·∆(G ) + m−3

m−1 for every odd integer m ≥ 3.

▶ m = 5 (Andersen, 1977; Goldberg, 1973)

▶ m = 7 (Andersen, 1977)

▶ m = 9 (Goldberg, 1984)

▶ m = 11 (Nishizeki and Kashiwagi, 1990; Tashkinov, 2000)

▶ m = 13 (Favrholdt, Stiebitz, and Toft, 2016)

▶ m = 15 (Scheide, 2010)

▶ m = 23 (C., Gao, Kim, Postle and Shan, 2018)

▶ m = 39 (C., and Jing, 2019)
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random graphs

Let M(n,m) be the probability space consisting of all loopless

multigraphs with n vertices and m edges, in which m pairs from [n] are

chosen independently at random with repetitions.

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), M ∼ M(n,m) typically satisfies

χ′(M) = max {∆(M), ω(M)}. More specifically,

▶ if n is even and m := m(n), then χ′(M) = ∆(M) for a typical

M ∼ M(n,m).

▶ for fixed ϵ > 0, if n is odd, then a typical M ∼ M(n,m) has

χ′(M) = ∆(M) for m ≤ (1− ϵ)n3, and χ′(M) = ω(M) for

m ≥ (1− ϵ)n3.

15



random graphs

Let M(n,m) be the probability space consisting of all loopless

multigraphs with n vertices and m edges, in which m pairs from [n] are

chosen independently at random with repetitions.

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), M ∼ M(n,m) typically satisfies

χ′(M) = max {∆(M), ω(M)}. More specifically,

▶ if n is even and m := m(n), then χ′(M) = ∆(M) for a typical

M ∼ M(n,m).

▶ for fixed ϵ > 0, if n is odd, then a typical M ∼ M(n,m) has

χ′(M) = ∆(M) for m ≤ (1− ϵ)n3, and χ′(M) = ω(M) for

m ≥ (1− ϵ)n3.

15



random graphs

Let M(n,m) be the probability space consisting of all loopless

multigraphs with n vertices and m edges, in which m pairs from [n] are

chosen independently at random with repetitions.

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), M ∼ M(n,m) typically satisfies

χ′(M) = max {∆(M), ω(M)}. More specifically,

▶ if n is even and m := m(n), then χ′(M) = ∆(M) for a typical

M ∼ M(n,m).

▶ for fixed ϵ > 0, if n is odd, then a typical M ∼ M(n,m) has

χ′(M) = ∆(M) for m ≤ (1− ϵ)n3, and χ′(M) = ω(M) for

m ≥ (1− ϵ)n3.

15



random graphs

Let M(n,m) be the probability space consisting of all loopless

multigraphs with n vertices and m edges, in which m pairs from [n] are

chosen independently at random with repetitions.

Haxell, Krivelevich, and Kronenberg, 2019:

For a given m := m(n), M ∼ M(n,m) typically satisfies

χ′(M) = max {∆(M), ω(M)}. More specifically,

▶ if n is even and m := m(n), then χ′(M) = ∆(M) for a typical

M ∼ M(n,m).

▶ for fixed ϵ > 0, if n is odd, then a typical M ∼ M(n,m) has

χ′(M) = ∆(M) for m ≤ (1− ϵ)n3, and χ′(M) = ω(M) for

m ≥ (1− ϵ)n3.

15



r-graphs

r-graph:

an r -regular (multi-)graph such that

|∂(X )| ≥ r for every X ⊆ V with |X | odd.

Seymour’s r-graph conjecture, 1974:

Every r -graph G satisfies χ′(G ) ≤ r + 1.

small density:

If G is an r -graph, then ω(G ) ≤ r , and so

max{∆(G ) + 1, ωG} = r + 1.

▶ for any X ⊆ V with |X | odd, we have |∂(X )| ≥ r

▶ 2|E [X ]|+ |∂(X )| = r |X |
▶ 2|E [X ]| ≤ r(|X | − 1)

▶ 2|E [X ]|/(|X | − 1) ≤ r
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the main theorem

C., Jing, and Zang, 2019+

If χ′(G ) ≥ ∆(G ) + 2, then χ′(G ) = ω(G ).

what is this theorem?

If χ′(G ) = k + 1 ≥ ∆(G ) + 2, then G has a subgraph H with odd

number of vertices such that

for every edge e ∈ E (H), edges H − e can be decomposed into k

near-perfect matchings.

characterizations of such Hs?

|H| ≤ 3

some ring graphs –cycles with multiple edges

others???
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graph edge covering

edge cover F :

an edge set F such that each vertex of G is incident to at least one

edge in F , i.e.,

an edge vector x such that Ax ≥ 1 (Cornuéjois)

edge cover packing problem (ECPP):

a coloring of the edges of a graph G using the maximum number of

colors in such a way that at each vertex all colors occur.

cover index ξ(G ):

the optimal value of ECPP.

difficulty:

determining the cover index ξ(G ) is NP-hard.
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lower bounds

For each U ⊆ V (G ), let E+(U) be the set of all edges of G with at least

one end in U for each U ⊆ V , i.e., |E+(U)| = |E (U)|+ |∂(U)|.

fractional co-density and co-density:

Φ∗(G ) = min
{

2|E+(U)|
|U|+1 : U ⊆ V , |U| ≥ 3 and odd

}
.

Φ(G ) = ⌊Φ∗(G )⌋.

upper bound:

ξ(G ) ≤ min {δ(G ),Φ(G )}.

recall:

χ′(G ) ≥ min {∆(G ), ω(G )}.
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fractional cover index

fractional cover index ξ∗(G ):

the optimal value of the fractional edge cover packing problem

(FECPP):

Maximize 1Tx

subject to Bx = 1

x ≥ 0,

where B is the edge-edge cover incidence matrix of G .

Zhao, Chen, and Sang, 2020:

ξ∗(G ) = min{δ(G ), Φ∗(G )}.
Moreover, there is a combinatorial polynomial-time algorithm for

finding the fractional co-density Φ∗(G ) of any multigraph G .
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Gupta’s cover index conjecture

Gupta, 1978:

ξ(G ) ≥ min {δ(G )− 1,Φ(G )}.

the Goldberg-Seymour conjecture:

χ′(G ) ≤ max {∆(G ) + 1, ω(G )}.

Gupta, 1978:

ξ(G ) ≥ δ(G )− µ(G )).

ξ(G ) ≥ min{⌊ 7δ(G)+1
8 ⌋, ⌊Φ(G )⌋}.

Cao, C., Ding, Jing, and Zang, 2020+:

ξ(G ) ≥ min{δ(G )− 1, Φ(G )} if Φ(G ) is not integral and

ξ(G ) ≥ min{δ(G )− 2, Φ(G )− 1} otherwise.
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total-coloring number

total-coloring:

an assignment of colors to the edges and vertices of G such that no two

adjacent edges receive the same color, no two adjacent vertices receive

the same color and no edge has the same color as its two endpoints.

total-coloring number χ′′(G ):

the least number of colors required for a total-coloring of G .

Behzad’s total-coloring conjecture, 1965:

χ′′(G ) ≤ ∆(G ) + 2 for every simple graph G .
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special graph H

special graph H:

χ′(H) = k + 1 ≥ ∆(H) + 2, H − e is a disjoint union of k near-perfect

matchings for any edge e ∈ E (H), say M1, . . . ,Mk , which gives a

(k + 1)-edge-coloring of H

a total coloring of H:

for each vertex v , since k ≥ ∆(H) + 1, there is a color i not used by

edges incident to v , assign i to v .
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χ′ vs χ′′

Goldberg’s total-coloring conjecture, 1984:

If χ′(G ) ≥ ∆(G ) + 3, then χ′′(G ) = χ′(G ).

Cao, C., Jing, 2020

If χ′(G ) ≥ max{∆(G ) + 2, |V (G )|+ 1}, then χ′′(G ) = χ′(G ).

C., and Hao, 2021+:

If χ′(G ) ≥ ∆(G ) + 10∆(G )35/36, then χ′′(G ) = χ′(G ) provided ∆(G )

sufficiently large.
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more applications

▶ characterization when χ′(G ) = ∆(G ) + µ(G ) when µ(G ) ≥ 2 (Cao,

C., He, Jing, 2020)

▶ precoloring extension (Cao, C. Jing, Qi, Shan, 2021+)
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Classification of (multi)-graphs



Classification

A new classification:

A graph G is of the first class if χ′(G ) = max{∆(G ), ⌈ω(G )⌉}, and of

the second class otherwise.

the 2nd class graphs:

χ′(G ) = ∆(G ) + 1 and ω(G ) ≤ ∆(G ).

The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984:

If ω(G ) < ∆(G ), then χ′(G ) = ∆(G ).

the 2nd class graphs (Assuming Goldberg’s conjecture):

χ′(G ) = ∆(G ) + 1 and ω(G ) = ∆(G ).
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χ′(G ) = ∆(G ) + 1 and ω(G ) ≤ ∆(G ).

The Petersen graph belongs to the 2nd class.

A conjecture of Goldberg, 1984:

If ω(G ) < ∆(G ), then χ′(G ) = ∆(G ).
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the core conjecture

Hilton’s core conjecture, 1991:

A simple graph G is of the first class if every ∆-vertex is adjacent to at

most two other ∆-vertices (∆(G∆) ≤ 2)

Cao, C., Jing, and Shan (a series of papers), 2020+:

▶ Confirmed Hilton’s core conjecture.

▶ If G is a critical simple graph with δ(G∆) ≤ 2, then G is of the first

class.

▶ If G is a critical simple graph with δ(G∆) ≤ k and ∆(G ) ≥ 2n
3 + 3k

2 ,

then G is of the first class.
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the overfull conjecture

Hilton’s overfull conjecture, 1986

All simple graphs G with ∆(G ) > |G |/3 is of the first class with only

one exception when ∆(G ) = 3.

Plantholt, 2004:

Suppose the order n := |G | is even.
if δ(G ) ≥

√
7n/3 ≈ 0.8819n, then G is of the first class, and

the overfull conjecture holds for graphs with small minimum degree and

large maximum degree.

Cao, C., Jing, Shan, 2021+:

If ∆(G )− 7δ(G )/4 ≥ (3n − 17)/4, then G is of the first class. So

for 0 < ϵ < 1/7, if δ(G ) ≤ ϵn and ∆ ≥ (3n − 17 + 7ϵn)/4, then G is of

the first class.
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double edges

the Berge-Fulkerson conjecture, 1971:

if G is a bridgeless cubic graph, then G contains six perfect matchings

such that each edge is in exactly two of them, which is equivalent to

saying that χ′(2G ) = 6

the generalized Berge-Fulkerson conjecture (Seymour), 1979:

if G is an r -graph, then G contains 2r perfect matchings such that each

edge is in exactly two of them, which is equivalent to saying that

χ′(2G ) = 2r .

double regular graph conjecture:

For any regular graph G , its double graph 2G is of the first class.

double graph conjecture:

2G is of the first class for any graph G .
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planar graphs

Seymour’s exact conjecture, 1979

All planar graphs are of the first class.
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