Proof of the Goldberg-Seymour Conjecture - |l

11th Cargese Workshop on Combinatorial Optimization

Guantao Chen
September 21, 2022

Georgia State University, Atlanta, US
Supported in part by NSF grant DMS-1855716 and DMS-2154331

\SS’ e
GeorglaState
Umvcrsr(y



General setting
Tashkinov tree
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General setting



the theorem:
If X'(G) > A(G) + 2 then x'(G) = w(G),

where

w(G) = [w(G)]

w'(G) = max{TLlEl(fl)1| : HC G, |H| >3 and odd}




the theorem

the theorem:
If x'(G) > A(G) + 2 then x/(G) = w(G),

where
w(G) = [w(G)]
2|E(H
wi(G) = max{ H|( )1| : HC G, |H| >3 and odd}
Assuming:

G is a critical graph, x'(G) =k+1> A(G)+2, e € E(G) and
© € CK(G — e) is a k-edge coloring of G — e.



» ©(H) = Uecemyp(e).



some basic notation on coloring

> @(H) = Uece(H)®(e).
o(v) =
P(v) =

©(9(v)), the set of colors present at v
[k] — ¢(v), the set of colors missing at v.



some basic notation on coloring

> ©(H) = Uece(myp(e)-
» o(v) = ¢(0(v)), the set of colors present at v
@(v) = [k] — ¢(v), the set of colors missing at v.

» For each X C V(G), define 3(X) = Uxex®(x).
subqroph Hs G, FLH)= F(vh)



normal, closed, and strongly closed

U C V normal: (borrowed -fwm Andras)
@(u) N@(v) = 0 for any two distinct vertices u, v € U.
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normal, closed, and strongly closed

U C V normal:
@(u) N@(v) = 0 for any two distinct vertices u, v € U.

)
U closed: °3 .

U does not have lobes. o ;'
s l 5

3
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normal, closed, and strongly closed

U C V normal:
@(u) N@(v) = 0 for any two distinct vertices u, v € U.

U closed:
U does not have lobes.

U strongly closed: — 0‘4’(5
closed and colors on d(U) are distinct, i.e., |0o(U)| < 1 for each color

@Y



goal:

Find a U C V/(G) with e € E[U] which is both normal and strongly
closed.



subject

goal:

Find a U C V(G) with e € E[U] which is both normal and strongly
closed.

E,(U) is a near-perfect matching for G[U] for every color a € [K].
[l
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subject

goal:

Find a U C V(G) with e € E[U] which is both normal and strongly
closed.

E,(U) is a near-perfect matching for G[U] for every color o € [K].

w*(G) > k:
[E[U]l = k(U = 1)/2 + 1.



Tashkinov tree



Tashkinov tree

Definition
A Tashkinov tree with respect to e and ¢ is a sequence
T= (.yOa €1, Y1, epyyp) with P> 1:

(T1) The vertices yy, ..., yp are distinct, e, = e and and fori =1,...,p,
we have e; € Ec({yo,..-,Yi—1}, Vi) O&
(T2) Foreveryi> 2, p(e) € B(yn) for some h < i. '75



Tashkinov tree

Definition
A Tashkinov tree with respect to e and ¢ is a sequence
T= (_)/07 €1, Y1, epyyp) with P> 1:

(T1) The vertices yy, ..., yp are distinct, e, = e and and fori =1,...,p,
we have e; € Ec({yo,---,yi-1}, ¥i)-
(T2) Foreveryi> 2, p(e) € B(yn) for some h < i.

order <7:
The definition of Tashkinov tree also give a linear order of its vertices
and edges.



Tashkinov tree

Definition
A Tashkinov tree with respect to e and ¢ is a sequence
T= (.yOa €1, Y1, epyyp) with P> 1:

(T1) The vertices yy, ..., yp are distinct, e, = e and and fori =1,...,p,
we have e; € Ec({yo,---,yi-1}, ¥i)-
(T2) Foreveryi> 2, p(e) € B(yn) for some h < i.

order <7:

The definition of Tashkinov tree also give a linear order of its vertices
and edges.

Theorem (Tashkinov, 2000)

2
V(T) is elementary provided x'(G) = k + mG) +2 and e is a critical
edge, and p € C*(G —e).



proof of Tashkinov theorem
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maximal Tashkinov trees — closure:

Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the

same set of vertices.
he 10465
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maximal Tashkinov trees — closure:

Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the
same set of vertices.

Question:

Whether there is an e € E(G) and a coloring ¢ € C¥(G — e) such that
its maximal Tashkinov tree is strongly closed?
™ N




maximal Tashkinov trees — closure:

Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the
same set of vertices.

Question:

Whether there is an e € E(G) and a coloring ¢ € C¥(G — e) such that
its maximal Tashkinov tree is strongly closed?

problem:
Can we find a way to extend a Tashkinov tree to a strongly closed set,
but keep the normality?



X < k/(k—A):
for every @émentary>set X such that e € E[X].

Norma(



too many missing colors

X| < k/(k— A):
for every elementary set X such that e € E[X].

Proof.
Otherwise, since |p(v)| > k — A and ..., we have
k>3 ex [@(x)] +2>|X]|(k — A) > k, a contradiction.



too many missing colors

X| < k/(k— A):
for every elementary set X such that e € E[X].

Proof.

Otherwise, since |p(v)| > k — A and ..., we have
k>3 ex [@(x)] +2>|X]|(k — A) > k, a contradiction.

Scheide, 2010, C., Yu and Zang, 2009:
If X'(G) > A+ +/A/2, then ¥/'(G) = w(G).



Proof.

» Suppose there does not exist a strongly closed maximal Tashkinov
tree.

10



Scheide’s proof

Proof.
» Suppose there does not exist a strongly closed maximal Tashkinov
tree.

» There is a maximal Tashkinov tree T and a vertex v € V/(T) such

that p(v) C gogEg T)), and moreover, each color in B(v) appears at
least tW|ce on E(T) Y ot used T

10



Scheide’s proof

Proof.
» Suppose there does not exist a strongly closed maximal Tashkinov
tree.

» There is a maximal Tashkinov tree T and a vertex v € V/(T) such
that B(v) € @(E(T)), and moreover, each color in B(v) appears at
least twice on E(T)

> [V(T)| >2(k—A)+2
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Scheide’s proof

Proof.

» Suppose there does not exist a strongly closed maximal Tashkinov
tree.

» There is a maximal Tashkinov tree T and a vertex v € V/(T) such
that B(v) € @(E(T)), and moreover, each color in B(v) appears at
least twice on E(T)

> [V(T)| >2(k—A)+2

> [P(V(T) =2 evim2l@(v)] > 2[V(T)|- (k—A) >k,
a contradiction.
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an extension

TAA algorithm:

Suppose we have a tree sequence T = (yy, €1, y1,
fed(T). If o(f) ep(T), let

= T+ 7 = (.yOa €1, ),
outside T.

..., €p,Yp) and

.., €p,Yp, [, Ypt1), where y, 1 is the end of f

1
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an extension

TAA algorithm:

Suppose we have a tree sequence T = (yp, €1, Y1, .-, €p, ¥p) and
fed(T). If p(f) € B(T), let

T:=T+f=(y.€1,%1,---,€p Yp: [, ¥p+1), Where y,.1 is the end of f
outside T.

Tashkinov tree T:

starting with V/(e), apply TAAs repeadily.

11



an extension
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Suppose we have a tree sequence T = (yp, €1, Y1, .-, €p, ¥p) and
fed(T). If p(f) € B(T), let

T:=T+f=(y.€1,%1,---,€p Yp: [, ¥p+1), Where y,.1 is the end of f
outside T.

Tashkinov tree T:

starting with V/(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:
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an extension

TAA algorithm:

Suppose we have a tree sequence T = (yp, €1, Y1, .-, €p, ¥p) and
fed(T). If p(f) € B(T), let

T:=T+f=(y.€1,%1,---,€p Yp: [, ¥p+1), Where y,.1 is the end of f
outside T.

Tashkinov tree T:
starting with V/(e), apply TAAs repeadily.
extension of Tashkinov tree under a fixed coloring:

» Let T; be a maximal Tashkinov tree. If Ty is strongly closed, stop;
otherwise,

11



an extension

TAA algorithm:

Suppose we have a tree sequence T = (yp, €1, Y1, .-, €p, ¥p) and
fed(T). If o(f) ep(T), let

T:=T+f=(y.€1,%1,---,€p Yp: [, ¥p+1), Where y,.1 is the end of f
outside T.

Tashkinov tree T:

starting with V/(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

» Let 7; be a maximal Tashkingv tree. If_T; is strongly closed, stop;

otherwise, m ‘S' z .-

» find an edge f; € 9(Ty) and add f to T, and apply TAAto T + f;
to get a closed tree sequence T,. If T, is strongly closed, stop; other

wise

11



an extension

TAA algorithm:

Suppose we have a tree sequence T = (yp, €1, Y1, .-, €p, ¥p) and
fed(T). If p(f) € B(T), let

T:=T+f=(y.€1,%1,---,€p Yp: [, ¥p+1), Where y,.1 is the end of f
outside T.

Tashkinov tree T:

starting with V/(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

» Let T; be a maximal Tashkinov tree. If Ty is strongly closed, stop;
otherwise,

» find an edge f; € 9(T1) and add f to T, and apply TAAto T + f;
to get a closed tree sequence T,. If T, is strongly closed, stop; other
wise

> T5...
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C., Gao, Kim, Postle, and Shan, 2019:
Suppose x/'(G) # w(G). For every extended Tashkinov tree T we have

|E(T) > 2[p(T1)l-

12



bounded by [&(T;)|

C., Gao, Kim, Postle, and Shan, 2019:
Suppose x'(G) # w(G). Feﬁ-%veaif')} extended Tashkinov tree T w"g-ﬁ-aave

|E(T)| > 2[7(T1)l-

Corollary
IfxX'(G) > A+ /A/2, then X' (G) = w(G).
Proof.
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bounded by [&(T;)|

C., Gao, Kim, Postle, and Shan, 2019:
Suppose x/'(G) # w(G). For every extended Tashkinov tree T we have

|E(T)| > 2[7(T1)l-

Corollary
IfxX'(G) > A+ /A/2, then X' (G) = w(G).
Proof.

» by Scheide's theorem, | T1| > 2|®(v)| > 2(k — A) for some
veV(T),
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Proof.
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bounded by [&(T;)|

C., Gao, Kim, Postle, and Shan, 2019:
Suppose x/'(G) # w(G). For every extended Tashkinov tree T we have

|E(T)| > 2[7(T1)l-

Corollary
IfxX'(G) > A+ /A/2, then X' (G) = w(G).
Proof.

» by Scheide's theorem, | T1| > 2|®(v)| > 2(k — A) for some
veV(T),

> T > [B(T1)l > 2(k — D)%
> [B(T) > |TI(k— A)? > 2(k — A)>.
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the first vertices

TAA 5 A TR
: = 2D N
(G D

=
Llet ;. C To C T3 rC Tn C Thy1, and v; € V(T4q) is the first vertex
added to T;.
C., Jing, 2019:

¢ . . .
Under some reasonable condltlons‘," if we can prove that T; + v; is
elementary, then T;.; is elementary.

13



the first vertices

Let Ty, C T, C T3--- C T, C Tpy1, and v; € V(Tiy1) is the first vertex
added to T;.

C., Jing, 2019:
Under some reasonable conditions, if we can prove that T; + v; is
elementary, then T;.; is elementary.

difficulties:

13



the first vertices

Let Ty, C T, C T3--- C T, C Tpy1, and v; € V(Tiy1) is the first vertex
added to T;.

C., Jing, 2019:
Under some reasonable conditions, if we can prove that T; + v; is
elementary, then T;.; is elementary.

difficulties:

» We CANNOT prove T; + v; is elementary in general.
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the first vertices

Let Ty, C T, C T3--- C T, C Tpy1, and v; € V(Tiy1) is the first vertex
added to T;.

C., Jing, 2019:
Under some reasonable conditions, if we can prove that T; + v; is
elementary, then T;.; is elementary.

difficulties:

» We CANNOT prove T; + v; is elementary in general.

» \We cannot restrict our consideration to one coloring ¢ or a few
colorings related to it.

13



the structure of extension



a property of maximal Tashkinov tree

Lemma

Let (G,e,p) be a k-triple, let T be a maximal Tashkinov tree with

respect to e and o, and let « and [3 be two colors in [k] with

o(T)N{a, B} # 0. Then there is one (v, B)-path with respect
XA J

to  intersecting T.
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a property of maximal Tashkinov tree

Lemma

Let (G,e,p) be a k-triple, let T be a maximal Tashkinov tree with
respect to e and o, and let « and [3 be two colors in [k] with
o(T)N{a, B} # 0. Then there is at most one («, 3)-path with respect
to  intersecting T.

proof

Assume the contrary: there are at least two («a, 5)-paths Q; and @,
with respect to ¢ intersecting T. Since V(T) is normal and closed,
precisely one of o and 3, say «, is in B(T). Thus at least three ends of
@ and @ are outside T. Traversing Q; and @, from these ends
respectively, we can find at least three (T, ¢, {«, 5})-exit paths

P1, Py, P3. We call the tuple (¢, T, o, 8, P1, P2, P3) a counterexample
and use K to denote the set of all such counterexamples.

14



let (507 Taaa5»P17P27P3) be a
|P1| + |P2| + | P3|

.
[y

counterexample in K with the minimum

ke rupe cha e
a2t
AN
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Let T be a maximal Tashkinov tree w.r.t. e and ¢ € CK(G — e).

17



colorings?

Uy

Let T be a maximal Tashkinov tree w.r.t. e and ¢ € CK(G — e).

» \We want to find a vertex vy such that V/(T;) U {u1} is normal

17



Let T be a maximal Tashkinov tree w.r.t. e and ¢ € CK(G — e).

» We want to find a vertex u; such that V(T1) U {u1} is normal

» Normal w.r.t. which coloring?

17



colorings?

Let T be a maximal Tashkinov tree w.r.t. e and ¢ € CK(G — e).

» \We want to find a vertex vy such that V/(T;) U {u1} is normal

» Normal w.r.t. which coloring?

» We cannot say for all colorings in C¥(G — e)

17



colorings?

Let T be a maximal Tashkinov tree w.r.t. e and ¢ € CK(G — e).

» \We want to find a vertex vy such that V/(T;) U {u1} is normal
» Normal w.r.t. which coloring?
» We cannot say for all colorings in C¥(G — e)

» Special colorings?

17



stable coloring

a (T, C,p)-stable coloring 7:
A coloring satisfying the following two conditions.
(1) 7(f) = @(f) for any f € E incident to T with

and
(i) 7(v) =@(v) for any v € V(T).

(fed(T)u G

18



stable coloring

a (T, C,p)-stable coloring 7:
A coloring satisfying the following two conditions.
(1) 7(f) = @(f) for any f € E incident to T with ¢(f) € B(T)U C;

and
(i) 7(v) =@(v) for any v € V(T).

Lemma

Being (T, C,-)-stable is an equivalence relation on CK(G — e).

18



stable coloring

a (T, C,p)-stable coloring 7:
A coloring satisfying the following two conditions.

(1) 7(f) = @(f) for any f € E incident to T with ¢(f) € B(T)U C;
and

(i) 7(v) =@(v) for any v € V(T).

Lemma

Being (T, C,-)-stable is an equivalence relation on CK(G — e).

Lemma

Suppose T is closed but not strongly closed with respect to @, with
[V(T)| odd. If wis a (T, C,p)-stable coloring, then T is also closed
but not strongly closed with respect to 7.

18



exit path

exit path of T:
a path intersects T at exactly one vertex.

Stable (o(m’} Rerp
0“’/5\'14 T

19



exit path

exit path of T:

a path intersects T at exactly one vertex.

Lemma

Suppose T is closed with respect to ¢, and f € E(u,v) is an edge in
O(T) with v € V(T). If there exists a (T, C U {p(f)}, ¢)-stable
coloring 7, such that w(u) N7(T) # 0, then for any o € p(v) there
exists a (T, C U {p(f)}, ¢)-stable coloring o, such that v is a
(T,0,{a,o(f)})-exit.

19



exit path

exit path of T:
a path intersects T at exactly one vertex.

Lemma

Suppose T is closed with respect to ¢, and f € E(u,v) is an edge in
O(T) with v € V(T). If there exists a (T, C U {p(f)}, ¢)-stable
coloring 7, such that w(u) N7(T) # 0, then for any o € p(v) there
exists a (T, C U {p(f)}, ¢)-stable coloring o, such that v is a

(T, 0, {a, o(f)})-exit.

a stronger result
the above holds for every (T, C U {p(f)}}, p)-stable coloring.

19



Let T be a tree-sequence with respect to a k-triple (G, e, ¢).

20



defectiveness

Let T be a tree-sequence with respect to a k-triple (G, e, ¢).

defective color o, edge f € 9(T), and vertex v:
|0.(T)| > 2, o(f) = «, and v is an endvertex of f.

20



defectiveness

Let T be a tree-sequence with respect to a k-triple (G, e, ¢).
defective color o, edge f € 9(T), and vertex v:

|0.(T)| > 2, o(f) = «, and v is an endvertex of f.

free color a:
acp(T)and a ¢ o(T).

20



Let G be a graph such that x/(G) = k+ 1> A(G)+ 2 and e be a
critical edge.

21



Let G be a graph such that x/(G) = k+ 1> A(G)+ 2 and e be a
critical edge.
(T1, %0) and mo:

a Tashkinov tree w.r.t. e and a coloring ¢ satisfying the following
conditions.

21



T1

Let G be a graph such that x'(G) = k+1> A(G)+2 and ¢ be a
critical edge.
(Tl,gﬁo) and -

a Tashkinov tree w.r.t. e and a coloring ¢ satisfying the following
conditions.

» | 71| is maximum among all Tashkinov trees over all k-edge colorings
in CK(G —e).

21



T1

Let G be a graph such that x'(G) = k+1> A(G)+2 and ¢ be a
critical edge.
(Tl,gﬁo) and -

a Tashkinov tree w.r.t. e and a coloring ¢ satisfying the following
conditions.

» | 71| is maximum among all Tashkinov trees over all k-edge colorings
in CK(G —e).

» T3 is normal and closed. Assume T; is not strongly closed,
otherwise we are done.

21



picking up a special edge

Along to the order < of T, let v; be the largest defective vertex. Assume
vi is maximum over all (Ty, (), p)-stable colorings. Let f; € I(T1)
incident to vy such that mo(f;) = &7 is a defective color. Let u; be the
other endvertex of f;.

4 u,
3

/ J;:
7
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picking up a special edge

Along to the order < of T, let v; be the largest defective vertex. Assume
vi is maximum over all (Ty, (), p)-stable colorings. Let f; € I(T1)
incident to vy such that mo(f;) = &7 is a defective color. Let u; be the
other endvertex of f;.

Case 1: V(T)U{u} is normal for all (T, {01}, mp)-stable colorings:
let T, be a closure of Ty + (f1, u1) under a coloring ¢ such that
T, is maximum over all (Ty, {61}, mo)-stable colorings.

22



picking up a special edge

Along to the order < of T, let v; be the largest defective vertex. Assume
vi is maximum over all (Ty, (), p)-stable colorings. Let f; € I(T1)
incident to vy such that mo(f;) = &7 is a defective color. Let u; be the
other endvertex of f;.

Case 1: V(T)U{u} is normal for all (T, {01}, mp)-stable colorings:

let T, be a closure of Ty + (f1, u1) under a coloring ¢ such that
T, is maximum over all (Ty, {61}, mo)-stable colorings.

name it SE:

Define ( Ty, ¢1, S1, F1,01), where
S1 = {01} — connecting color

F1 = {fi} — connecting edge

©1 = SE — extension type.}

22



Case 2: There is a color v; € 7/ (T;) N7 (u1) for some ( Ty, {do}, 70)-
stable coloring 7'

We may assume v; € Tp(vi) N7o(u1), and so path Py = vifiuy is an
(T1, 7", {71, 01})-exit path.

23



TQ,QO]_...PE

Case 2: There is a color v; € 7 (T1) N7 (u1) for some (T, {do}, m0)-
stable coloring 7’:

We may assume 1 € To(v1) N7o(u1), and so path Py = vifiuy is an
(Ty, 7', {71,01})-exit path. o b Tie— 4,

Tl

exiting property:
for any (T1,{d1}, m1)-stable coloring %
m € T (1), vertex vy is a (T, 7, {71, 01})-exit, i.e., the (1, d1)-chain
P, (71,01) at vy is a path and V(P,,(71,61) N V(Ty) = 1.

23



TQ,QO]_...PE

Case 2: There is a color v; € 7 (T1) N7 (u1) for some (T, {do}, m0)-
stable coloring 7’:

We may assume 1 € To(v1) N7o(u1), and so path Py = vifiuy is an
(T, 7', {7, 01})-exit path.

exiting property:

for any (Ty,{d1}, m1)-stable coloring 7* and any missing color

m € T (1), vertex vy is a (T, 7, {71, 01})-exit, i.e., the (1, d1)-chain
Py, (71,01) at vy is a path and V(P,,(71,01) N V(T1) = 1.

T2:
pick up a (T1,{d1}, mo)-stable coloring my, let w1 = w4/ Py, (71,61), and
let T, be the closure of Ty(v1) under coloring ¢1.

23



TQ,QO]_...PE

Case 2: There is a color v; € 7 (T1) N7 (u1) for some (T, {do}, m0)-
stable coloring 7’:

We may assume 1 € To(v1) N7o(u1), and so path Py = vifiuy is an
(T, 7', {7, 01})-exit path.

exiting property:

for any (Ty,{d1}, m1)-stable coloring 7* and any missing color

m € T (1), vertex vy is a (T, 7, {71, 01})-exit, i.e., the (1, d1)-chain
Py, (71,01) at vy is a path and V(P,,(71,01) N V(T1) = 1.

T2:
pick up a (T1,{d1}, mo)-stable coloring my, let w1 = w4/ Py, (71,61), and
let T, be the closure of Ty(v1) under coloring ¢1.

maximality:
We pick up coloring 7 such that | T>| is maximum over all
(T1, {01}, mo)-stable colorings.
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name it PE:

Define ( Ty, ¢1, S1, F1,01), where
S1 = {m, d}-connecting colors
F1 = {fi} -connecting edge

©; = PE — extension type.

24



To-11

name it PE:

Define (T2, ¢1, 51, F1,©1), where
S; = {71, 0 }-connecting colors
Fy = {f} -connecting edge

©; = PE - extension type.

(71, 61)-chains:

recall two properties:
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To-11

name it PE:

Define (T2, ¢1, 51, F1,©1), where
S; = {71, 0 }-connecting colors
Fy = {f} -connecting edge

©; = PE - extension type.

(71, 01)-chains:

recall two properties:

» interchangeability property: all, except one, (71, 01)-chains
intersecting T; are cycles;
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To-11

name it PE:

Define (T2, ¢1, 51, F1,©1), where
S; = {71, 0 }-connecting colors
Fy = {f} -connecting edge

©; = PE - extension type.

(71, 01)-chains:

recall two properties:

» interchangeability property: all, except one, (71, 01)-chains
intersecting T; are cycles;

» exiting property: P, (71,01) is an exiting path.

» Let Q; denote the set of all (1, d1)-cycles intersecting Ty. Then, all
vertices v € V/(T1)\{v1} are on Q for some Q € O;.
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RE:

Case R: V(Q) — V(T,) # 0:

Let £, € 05,(T2) such that there is a path Q with colors 1,61 in T>
connecting f, and T7. Let T3 be the closure of T, + f, under the
coloring ¢, and define S, = S, F, = {fi,} and ©3 = RE, subject to

- p— ._.~’

25



RE:
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coloring ¢, and define S, = S, F, = {fi,} and ©3 = RE, subject to

| T3] is maximum over all (T, S, 1)-stable colorings:

» Otherwise, let 3 be a (T, Sz, ¢1)-stable coloring with closure T3
such that | T5| > | T3]

» Since ¢} is also ( Ty, S1, 1)-stable, so in the extension T3 — T,
(PE) we would have picked ¢ instead of ¢1, a contradiction.

25



RE:

Case R: V(Q) — V(T,) # 0:

Let £, € 05,(T2) such that there is a path Q with colors 1,61 in T>
connecting f, and T7. Let T3 be the closure of T, + f, under the
coloring ¢, and define S, = S, F, = {fi,} and ©3 = RE, subject to

| T3] is maximum over all (T, S, 1)-stable colorings:

» Otherwise, let 3 be a (T, Sz, ¢1)-stable coloring with closure T3
such that | T5| > | T3]

» Since ¢} is also ( Ty, S1, 1)-stable, so in the extension T3 — T,
(PE) we would have picked ¢ instead of ¢1, a contradiction.

formal statements:

With the above preparation, we will give the definition of Tashkinov
series (Tp, ¥n—1,Sn—1, Fr—1,©,—1), where the maximality property will
be defined separately.
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(T1, %0, So, Fo, ©0):

0o = € CX(G — e1), Ty is a closure of e by applying TAA under ¢y,
and Sy = Fy = ©g = (). Suppose that we have defined

(Ths Pn—1,Sn—1, Fn-1©n-1).
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ETT-1

(Tla(fQOaSO) F0790):
o = € CK(G — e1), Ty is a closure of e by applying TAA under ¢y,

and Sg = Fg = ©¢ = (). Suppose that we have defined
(Tna $n—1, Sn—la Fn—len—l)-

Iteration n:

If T, is strongly closed with respect to ¢,_1, stop. Else, we construct
the tuple (Tpi1, @n, Sn, Fn, ©5) as follows. Set

Dp—1=Ui<n-1Si — Pp_1(Th-1) (so Dy = 0).
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the condition for RE:

If there is a subscript h < n — 1 with ©, = PE and Sy = {&s,vs}, such
that some (4, 0x)-cycle O with respect to ¢,_1 intersects both V/(Tj)
and V(G) — V(T,), apply RE.
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the condition for RE:

If there is a subscript h < n — 1 with ©, = PE and Sy = {&s,vs}, such

that some (4, 0x)-cycle O with respect to ¢,_1 intersects both V/(Tj)
and V(G) — V(T,), apply RE.

RE:

Let 7, be an edge in O N J(T,) such that O contains a path L
connecting f, and V(Tj) with V(L) C V(T,). Let v, = ¢,—1 and
T,+1 be a closure of T, + f, under ¢,. Set 6, = 6, Yo = Vh,
Sp=A{0n,Vn}, Fn ={fa}, and ©, = RE.
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the condition for RE:

If there is a subscript h < n — 1 with ©, = PE and Sy = {&s,vs}, such
that some (4, 0x)-cycle O with respect to ¢,_1 intersects both V/(Tj)
and V(G) — V(T,), apply RE.

Else,

let v,, be the maximum defective vertex in the order < over all

(Thy Dy—1, pn—1)-stable colorings, let 7,_1 be a corresponding coloring,
let f, be a defective edge (of T, with respect to m,_1) incident to v,,
let u, be the other end of f,, and let §, = m,_1(f,).
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the condition for SE:

for every (T,, Dp—1 U {d,}, mp—1)-stable coloring 7, we have
T(un) NT(T,) =0
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SE

the condition for SE:

for every (T, Dp—1 U {d,}, my—1)-stable coloring 7, we have
T(up) NT(T,) =0

SE:

Let ¢, = m,—1 and let T,y be a closure of T, + f, under ¢,. Set
S, ={0n}, Fn = {fn}, and ©, = SE.
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SE

the condition for SE:

for every (T, Dp—1 U {d,}, my—1)-stable coloring 7, we have
T(un) NT(T,) =0

SE:

Let ¢, = m,—1 and let T,y be a closure of T, + f, under ¢,. Set
S, ={0n}, Fn = {fn}, and ©, = SE.

else
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PE

the preparation for PE:

pick a color 7, in T,_1(v,) as follows. If v, = v; for some 1 < i< n
with ©; = PE, let n’ be the largest such i and let v, = d,,. Otherwise,
let 7y, be an arbitrary color in T,_1(v,). Let @,_; be an arbitrary

(Th, Dp—1 U{d,}, mn—1)-stable coloring so that v, is a

(Th, 71, {Vn, O })-exit
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PE

the preparation for PE:

pick a color 7, in T,_1(v,) as follows. If v, = v; for some 1 < i< n
with ©; = PE, let n’ be the largest such i and let v, = d,,. Otherwise,
let 7y, be an arbitrary color in T,_1(v,). Let @,_; be an arbitrary

(Th, Dp—1 U{d,}, mn—1)-stable coloring so that v, is a

(Th, 71, {Vn, O })-exit

PE:

Let o, =7, _1/Pyv,(Yns 0n, mh_1). Let T,i1 be a closure of T, under
©n- Set 5, = {5m%}, Fn= {fn}v and ©, = PE.
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ETT T of layer n:

T,C T C T,y for a Tashkinov Series
{(Ti, pi-1,Si-1,Fi-1,0i-1) : 1 <i < n+1}.
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RE is good
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SE is good

e
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TAA.
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Problems with PE
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Let {(T;,vi-1,S
y Pi—1, i—lyFi—1,@'_ 1<
and 0, € C*(G — e1). i-1) 11 <7< n+1} be a Tashkinov series
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strongly related colorings

Let {(T;,pi—1,Si-1,Fi—1,0;-1) : 1 <i < n+ 1} be a Tashkinov series
and 0, € CK(G — e1).

ont @pmod T,

if every tree-sequence T* D T, obtained from T, + f, (resp. T,) by
TAA under o, when ©, = RE or SE (resp. when ©, = PE) is an ETT
under o,, with a corresponding Tashkinov series

{(T,*, oi—1,Si_1,Fi_1, @,',1) 1<i<n+ 1}, satisfying the following
conditions for all / with 1 </ < n:
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strongly related colorings

Let {(T;, pi—1,Si—1,Fi—1,©;-1) : 1 <i < n+ 1} be a Tashkinov series
and 0, € CK(G — e1).

ont @pmod T,

if every tree-sequence T* D T, obtained from T, + f, (resp. T,) by
TAA under o, when ©, = RE or SE (resp. when ©, = PE) is an ETT
under o,, with a corresponding Tashkinov series

{(T,*, oi—1,Si_1,Fi_1, @,',1) 1<i<n+ 1}, satisfying the following
conditions for all / with 1 </ < n:

> Tr=T,
» 0, is a (T;, D;, p;)-stable coloring in CX(G — e;).

(o, T,)-ETT:
T* is called an ETT corresponding to (o, T,)
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an ETT T has the maximum property (MP) under ¢,:
if
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maximality property

an ETT T has the maximum property (MP) under ¢,:
if

» |T;| is maximum among all Tashkinov trees T; with respect to an
edge €’ € E and a coloring ) € CX(G — ¢'),
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maximality property

an ETT T has the maximum property (MP) under ¢,:
if

» |T;| is maximum among all Tashkinov trees T; with respect to an
edge €’ € E and a coloring ) € CX(G — ¢'),

» | T;11| is maximum over all (T;, D;, ¢;)-stable colorings for any i
with1<i<n-1,;

» that is, [ T;;1| is maximum over all tree-sequences T/, ;, which is a
closure of T; + f; (resp. T;) under a (T;, D;, ¢;)-stable coloring ¢/ if
©; = RE or SE (resp. if ©; = PE), where f; is the connecting edge
in F;.

Note:

In the above definition | T,,+1] is not required to be maximum over all
(Th, Dn, @n)-stable colorings.
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Let T be an ETT based on the Tashkinov series
{(Ti,pi—1,Si-1,Fi—1,0;-1) : 1 <i < n+1}. If T has MP under ¢,
then the following statements hold:
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the main theorem -1

Let T be an ETT based on the Tashkinov series

{(7',-,(,0,-,1,5,-,1, F,',l,@,',l) 01 < i <n+ 1} If T has MP under ©n,
then the following statements hold:

normality:

V/(T) is normal with respect to ©,,.
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the main theorem -1

Let T be an ETT based on the Tashkinov series

{(7',-,(,0,-,1,5,-,1, F,',l,@,',l) 01 < i <n+ 1} If T has MP under ©n,
then the following statements hold:

normality:

V/(T) is normal with respect to ©,,.

interchaneability

For any two colors «, 8 with ©,(T,) N {«, 3} # 0, there is exactly one
(v, B)-path intersecting V/(T,).

exiting path

If ©, = PE, then P, (7vn,0n,0,) contains precisely one vertex, v,, from
T, for any (T,, Dy, pn)-stable coloring o.
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