Proof of the Goldberg-Seymour Conjecture - II

11th Cargèse Workshop on Combinatorial Optimization

Guantao Chen

September 21, 2022

Georgia State University, Atlanta, US Supported in part by NSF grant DMS-1855716 and DMS-2154331

General setting

Tashkinov tree

the new extension

General setting

the theorem

the theorem:

If
$$\chi'(G) \ge \Delta(G) + 2$$
 then $\chi'(G) = \omega(G)$, where

$$\begin{aligned} \omega(G) &= \ \lceil \omega^*(G) \rceil \\ \omega^*(G) &= \ \max\left\{\frac{2|E(H)|}{|H|-1}: \ H \subseteq G, \ |H| \ge 3 \text{ and odd}\right\} \end{aligned}$$

the theorem

the theorem:

If
$$\chi'(G) \ge \Delta(G) + 2$$
 then $\chi'(G) = \omega(G)$, where

$$\begin{aligned} \omega(G) &= \ \lceil \omega^*(G) \rceil \\ \omega^*(G) &= \ \max\left\{\frac{2|E(H)|}{|H|-1}: \ H \subseteq G, \ |H| \ge 3 \text{ and odd}\right\} \end{aligned}$$

Assuming:

G is a critical graph, $\chi'(G) = k + 1 \ge \Delta(G) + 2$, $e \in E(G)$ and $\varphi \in C^k(G - e)$ is a k-edge coloring of G - e.

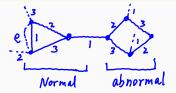
some basic notation on coloring

$$\blacktriangleright \varphi(H) = \bigcup_{e \in E(H)} \varphi(e).$$

- $\blacktriangleright \varphi(H) = \cup_{e \in E(H)} \varphi(e).$

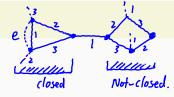
- $\blacktriangleright \varphi(H) = \cup_{e \in E(H)} \varphi(e).$
- ► For each $X \subseteq V(G)$, define $\overline{\varphi}(X) = \bigcup_{x \in X} \overline{\varphi}(x)$. subgraph $H \in G$, $\overline{\mathcal{A}}(H) = \overline{\mathcal{A}}(V(H))$

 $U \subseteq V$ normal: (borrowed from Andras) $\overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$ for any two distinct vertices $u, v \in U$.



 $U \subseteq V$ normal: $\overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$ for any two distinct vertices $u, v \in U$.

U closed: U does not have lobes.



 $U \subseteq V \text{ normal:}$ $\overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset \text{ for any two distinct vertices } u, v \in U.$ U closed: U does not have lobes. U strongly closed: $(U \text{ closed and colors on } \partial(U) \text{ are distinct, i.e., } |\partial_{\alpha}(U)| \leq 1 \text{ for each color } \alpha.$

goal: Find a $U \subseteq V(G)$ with $e \in E[U]$ which is both normal and strongly closed.

goal:

Find a $U \subseteq V(G)$ with $e \in E[U]$ which is both normal and strongly closed.

 $E_{\alpha}(U) \text{ is a near-perfect matching for } G[U] \text{ for every color } \alpha \in [k].$ $\longrightarrow |E_{\lambda}(U)| = \frac{|U|-1}{2}$ $\longrightarrow |E(U)| = \sum_{\lambda \in \mathbb{I} \setminus \mathbb{I}} |E_{\lambda}[U]| + |\{e\}|$ $= \frac{k(|U|-1)}{2} + 1$ $\longrightarrow \frac{2|E(U)|}{|U|-1} = k + \dots > k$

goal:

Find a $U \subseteq V(G)$ with $e \in E[U]$ which is both normal and strongly closed.

 $E_{\alpha}(U)$ is a near-perfect matching for G[U] for every color $\alpha \in [k]$.

 $\omega^*(G) > k$: |E[U]| = k(|U| - 1)/2 + 1.

Definition

A Tashkinov tree with respect to e and φ is a sequence $T = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$:

(T1) The vertices y₀,..., y_p are distinct, e₁ = e and and for i = 1,..., p, we have e_i ∈ E_G({y₀,..., y_{i-1}}, y_i).
(T2) For every i ≥ 2, φ(e_i) ∈ φ(y_h) for some h < i.

Definition

A Tashkinov tree with respect to e and φ is a sequence $T = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$:

(T1) The vertices y_0, \ldots, y_p are distinct, $e_1 = e$ and and for $i = 1, \ldots, p$, we have $e_i \in E_G(\{y_0, \ldots, y_{i-1}\}, y_i)$.

(T2) For every $i \ge 2$, $\varphi(e_i) \in \overline{\varphi}(y_h)$ for some h < i.

order $\prec_{\mathcal{T}}$:

The definition of Tashkinov tree also give a linear order of its vertices and edges.

Definition

A Tashkinov tree with respect to e and φ is a sequence $T = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$:

(T1) The vertices y_0, \ldots, y_p are distinct, $e_1 = e$ and and for $i = 1, \ldots, p$, we have $e_i \in E_G(\{y_0, \ldots, y_{i-1}\}, y_i)$.

(T2) For every $i \ge 2$, $\varphi(e_i) \in \overline{\varphi}(y_h)$ for some h < i.

order $\prec_{\mathcal{T}}$:

The definition of Tashkinov tree also give a linear order of its vertices and edges.

Theorem (Tashkinov, 2000) V(T) is elementary provided $\chi'(G) = k + \frac{1}{2}(G) + 2$ and e is a critical edge, and $\varphi \in C^k(G - e)$.

proof of Tashkinov theorem



Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the same set of vertices.

no lobes also called a closure. $d \in \overline{\mathcal{A}(T)}$ $\beta \neq \partial$.

Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the same set of vertices.

Question:

Whether there is an $e \in E(G)$ and a coloring $\varphi \in C^k(G - e)$ such that its maximal Tashkinov tree is strongly closed?

Observation:

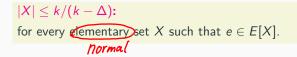
all maximal Tashkinov trees are closed (its vertex set) and have the same set of vertices.

Question:

Whether there is an $e \in E(G)$ and a coloring $\varphi \in C^k(G - e)$ such that its maximal Tashkinov tree is strongly closed?

problem:

Can we find a way to extend a Tashkinov tree to a strongly closed set, but keep the normality?



$|X| \leq k/(k-\Delta)$:

for every elementary set X such that $e \in E[X]$.

Proof.

Otherwise, since $|\overline{\varphi}(v)| \ge k - \Delta$ and ..., we have $k \ge \sum_{v \in X} |\overline{\varphi}(x)| + 2 > |X|(k - \Delta) > k$, a contradiction.

$|X| \leq k/(k-\Delta)$:

for every elementary set X such that $e \in E[X]$.

Proof.

Otherwise, since $|\overline{\varphi}(v)| \ge k - \Delta$ and ..., we have $k \ge \sum_{v \in X} |\overline{\varphi}(x)| + 2 > |X|(k - \Delta) > k$, a contradiction.

Scheide, 2010, C., Yu and Zang, 2009: If $\chi'(G) \ge \Delta + \sqrt{\Delta/2}$, then $\chi'(G) = \omega(G)$.

 Suppose there does not exist a strongly closed maximal Tashkinov tree.

- Suppose there does not exist a strongly closed maximal Tashkinov tree.
- ► There is a maximal Tashkinov tree T and a vertex $v \in V(T)$ such that $\overline{\varphi}(v) \subseteq \varphi(E(T))$, and moreover, each color in $\overline{\varphi}(v)$ appears at least twice on E(T)

- Suppose there does not exist a strongly closed maximal Tashkinov tree.
- There is a maximal Tashkinov tree T and a vertex v ∈ V(T) such that φ(v) ⊆ φ(E(T)), and moreover, each color in φ(v) appears at least twice on E(T)

$$|V(T)| \geq 2(k - \Delta) + 2$$

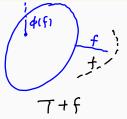
- Suppose there does not exist a strongly closed maximal Tashkinov tree.
- There is a maximal Tashkinov tree T and a vertex v ∈ V(T) such that φ(v) ⊆ φ(E(T)), and moreover, each color in φ(v) appears at least twice on E(T)

$$\blacktriangleright |V(T)| \geq 2(k - \Delta) + 2$$

► $|\overline{\varphi}(V(T)| = \sum_{v \in V(T)} 2|\overline{\varphi}(v)| > 2|V(T)| \cdot (k - \Delta) > k$, a contradiction.

TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.



TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.

Tashkinov tree *T*:

starting with V(e), apply TAAs repeadily.

TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.

Tashkinov tree *T*:

starting with V(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.

Tashkinov tree *T*:

starting with V(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

Let T₁ be a maximal Tashkinov tree. If T₁ is strongly closed, stop; otherwise,

TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.

Tashkinov tree *T*:

starting with V(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

- Let T_1 be a maximal Tashkinov tree. If T_1 is strongly closed, stop; otherwise,
- find an edge f₁ ∈ ∂(T₁) and add f to T, and apply TAA to T + f₁ to get a closed tree sequence T₂. If T₂ is strongly closed, stop; other wise

TAA algorithm:

Suppose we have a tree sequence $T = (y_0, e_1, y_1, \ldots, e_p, y_p)$ and $f \in \partial(T)$. If $\varphi(f) \in \overline{\varphi}(T)$, let $T := T + f = (y_0, e_1, y_1, \ldots, e_p, y_p, f, y_{p+1})$, where y_{p+1} is the end of f outside T.

Tashkinov tree *T*:

starting with V(e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

- Let T₁ be a maximal Tashkinov tree. If T₁ is strongly closed, stop; otherwise,
- Find an edge f₁ ∈ ∂(T₁) and add f to T, and apply TAA to T + f₁ to get a closed tree sequence T₂. If T₂ is strongly closed, stop; other wise

bounded by $|\overline{\varphi}(\mathcal{T}_1)|$

C., Gao, Kim, Postle, and Shan, 2019:

Suppose $\chi'(G) \neq \omega(G)$. For every extended Tashkinov tree T we have

 $|E(T)|>2|\overline{\varphi}(T_1)|.$

C., Gao, Kim, Postle, and Shan, 2019: Suppose $\chi'(G) \neq \omega(G)$. For every extended Tashkinov tree T with have

 $|E(T)|>2|\overline{\varphi}(T_1)|.$

Corollary

If
$$\chi'(G) \ge \Delta + \sqrt[3]{\Delta/2}$$
, then $\chi'(G) = \omega(G)$.

Proof.

C., Gao, Kim, Postle, and Shan, 2019:

Suppose $\chi'(G) \neq \omega(G)$. For every extended Tashkinov tree T we have

 $|E(T)|>2|\overline{\varphi}(T_1)|.$

Corollary

If
$$\chi'(G) \ge \Delta + \sqrt[3]{\Delta/2}$$
, then $\chi'(G) = \omega(G)$.

Proof.

by Scheide's theorem, |T₁| ≥ 2|φ(v)| ≥ 2(k − Δ) for some v ∈ V(T₁);

C., Gao, Kim, Postle, and Shan, 2019:

Suppose $\chi'(G) \neq \omega(G)$. For every extended Tashkinov tree T we have

 $|E(T)|>2|\overline{\varphi}(T_1)|.$

Corollary

If
$$\chi'(G) \ge \Delta + \sqrt[3]{\Delta/2}$$
, then $\chi'(G) = \omega(G)$.

Proof.

- by Scheide's theorem, |T₁| ≥ 2|φ(v)| ≥ 2(k − Δ) for some v ∈ V(T₁);
- $\blacktriangleright |T| \ge |\overline{\varphi}(T_1)| > 2(k \Delta)^2.$

C., Gao, Kim, Postle, and Shan, 2019:

Suppose $\chi'(G) \neq \omega(G)$. For every extended Tashkinov tree T we have

 $|E(T)|>2|\overline{\varphi}(T_1)|.$

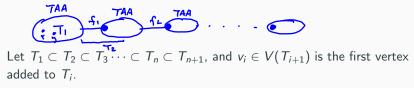
Corollary

If
$$\chi'(G) \ge \Delta + \sqrt[3]{\Delta/2}$$
, then $\chi'(G) = \omega(G)$.

Proof.

- by Scheide's theorem, |T₁| ≥ 2|φ(v)| ≥ 2(k − Δ) for some v ∈ V(T₁);
- $\blacktriangleright |T| \ge |\overline{\varphi}(T_1)| > 2(k \Delta)^2.$
- $\blacktriangleright |\overline{\varphi}(T)| > |T|(k-\Delta)^2 \ge 2(k-\Delta)^3.$

the first vertices



C., Jing, 2019:

Under some reasonable conditions, if we can prove that $T_i + v_i$ is elementary, then T_{i+1} is elementary.

Let $T_1 \subset T_2 \subset T_3 \cdots \subset T_n \subset T_{n+1}$, and $v_i \in V(T_{i+1})$ is the first vertex added to T_i .

C., Jing, 2019:

Under some reasonable conditions, if we can prove that $T_i + v_i$ is elementary, then T_{i+1} is elementary.

difficulties:

Let $T_1 \subset T_2 \subset T_3 \cdots \subset T_n \subset T_{n+1}$, and $v_i \in V(T_{i+1})$ is the first vertex added to T_i .

C., Jing, 2019:

Under some reasonable conditions, if we can prove that $T_i + v_i$ is elementary, then T_{i+1} is elementary.

difficulties:

• We CANNOT prove $T_i + v_i$ is elementary in general.

Let $T_1 \subset T_2 \subset T_3 \cdots \subset T_n \subset T_{n+1}$, and $v_i \in V(T_{i+1})$ is the first vertex added to T_i .

C., Jing, 2019:

Under some reasonable conditions, if we can prove that $T_i + v_i$ is elementary, then T_{i+1} is elementary.

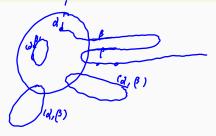
difficulties:

- We CANNOT prove $T_i + v_i$ is elementary in general.
- We cannot restrict our consideration to one coloring φ or a few colorings related to it.

the structure of extension

Lemma

Let (G, e, φ) be a k-triple, let T be a maximal Tashkinov tree with respect to e and φ , and let α and β be two colors in [k] with $\overline{\varphi}(T) \cap \{\alpha, \beta\} \neq \emptyset$. Then there is at most one (α, β) -path with respect to φ intersecting T.

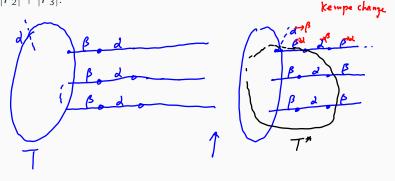


Lemma

Let (G, e, φ) be a k-triple, let T be a maximal Tashkinov tree with respect to e and φ , and let α and β be two colors in [k] with $\overline{\varphi}(T) \cap \{\alpha, \beta\} \neq \emptyset$. Then there is at most one (α, β) -path with respect to φ intersecting T.

proof

Assume the contrary: there are at least two (α, β) -paths Q_1 and Q_2 with respect to φ intersecting T. Since V(T) is normal and closed, precisely one of α and β , say α , is in $\overline{\varphi}(T)$. Thus at least three ends of Q_1 and Q_2 are outside T. Traversing Q_1 and Q_2 from these ends respectively, we can find at least three $(T, \varphi, \{\alpha, \beta\})$ -exit paths P_1, P_2, P_3 . We call the tuple $(\varphi, T, \alpha, \beta, P_1, P_2, P_3)$ a *counterexample* and use \mathcal{K} to denote the set of all such counterexamples. let $(\varphi, T, \alpha, \beta, P_1, P_2, P_3)$ be a counterexample in \mathcal{K} with the minimum $|P_1| + |P_2| + |P_3|$.



Let T be a maximal Tashkinov tree w.r.t. e and $\varphi \in \mathcal{C}^k(G-e)$.

Let T be a maximal Tashkinov tree w.r.t. e and $\varphi \in \mathcal{C}^k(G - e)$.

• We want to find a vertex u_1 such that $V(T_1) \cup \{u_1\}$ is normal

- Let T be a maximal Tashkinov tree w.r.t. e and $\varphi \in \mathcal{C}^k(G-e)$.
 - We want to find a vertex u_1 such that $V(T_1) \cup \{u_1\}$ is normal
 - Normal w.r.t. which coloring?

- Let T be a maximal Tashkinov tree w.r.t. e and $\varphi \in \mathcal{C}^k(G e)$.
 - We want to find a vertex u_1 such that $V(T_1) \cup \{u_1\}$ is normal
 - ▶ Normal w.r.t. which coloring?
 - We cannot say for all colorings in $C^k(G-e)$

- Let T be a maximal Tashkinov tree w.r.t. e and $\varphi \in \mathcal{C}^k(G e)$.
 - We want to find a vertex u_1 such that $V(T_1) \cup \{u_1\}$ is normal
 - Normal w.r.t. which coloring?
 - We cannot say for all colorings in $C^k(G-e)$
 - Special colorings?

stable coloring

a (T, C, φ)-stable coloring π :

A coloring satisfying the following two conditions.

(i) $\pi(f) = \varphi(f)$ for any $f \in E$ incident to T with $\varphi(f) \in \overline{\varphi}(T) \cup C$ and

(ii)
$$\overline{\pi}(v) = \overline{\varphi}(v)$$
 for any $v \in V(T)$.

stable coloring

a (T, C, φ)-stable coloring π :

A coloring satisfying the following two conditions.

(i)
$$\pi(f) = \varphi(f)$$
 for any $f \in E$ incident to T with $\varphi(f) \in \overline{\varphi}(T) \cup C$;
and
(ii) $\overline{\pi}(y) = \overline{\varphi}(y)$ for any $y \in V(T)$

(ii)
$$\overline{\pi}(v) = \overline{\varphi}(v)$$
 for any $v \in V(T)$.

Lemma

Being (T, C, \cdot) -stable is an equivalence relation on $C^k(G - e)$.

stable coloring

a (T, C, φ)-stable coloring π :

A coloring satisfying the following two conditions.

(i)
$$\pi(f) = \varphi(f)$$
 for any $f \in E$ incident to T with $\varphi(f) \in \overline{\varphi}(T) \cup C$;
and
(ii) $\overline{\pi}(v) = \overline{\varphi}(v)$ for any $v \in V(T)$.

Lemma

Being (T, C, \cdot) -stable is an equivalence relation on $C^k(G - e)$.

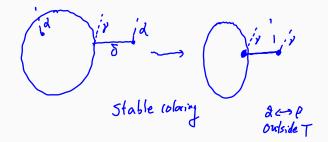
Lemma

Suppose T is closed but not strongly closed with respect to φ , with |V(T)| odd. If π is a (T, C, φ) -stable coloring, then T is also closed but not strongly closed with respect to π .

exit path

exit path of T:

a path intersects T at exactly one vertex.



exit path

exit path of T:

a path intersects T at exactly one vertex.

Lemma

Suppose T is closed with respect to φ , and $f \in E(u, v)$ is an edge in $\partial(T)$ with $v \in V(T)$. If there exists a $(T, C \cup \{\varphi(f)\}, \varphi)$ -stable coloring π , such that $\overline{\pi}(u) \cap \overline{\pi}(T) \neq \emptyset$, then for any $\alpha \in \overline{\varphi}(v)$ there exists a $(T, C \cup \{\varphi(f)\}, \varphi)$ -stable coloring σ , such that v is a $(T, \sigma, \{\alpha, \varphi(f)\})$ -exit.

exit path

exit path of T:

a path intersects T at exactly one vertex.

Lemma

Suppose T is closed with respect to φ , and $f \in E(u, v)$ is an edge in $\partial(T)$ with $v \in V(T)$. If there exists a $(T, C \cup \{\varphi(f)\}, \varphi)$ -stable coloring π , such that $\overline{\pi}(u) \cap \overline{\pi}(T) \neq \emptyset$, then for any $\alpha \in \overline{\varphi}(v)$ there exists a $(T, C \cup \{\varphi(f)\}, \varphi)$ -stable coloring σ , such that v is a $(T, \sigma, \{\alpha, \varphi(f)\})$ -exit.

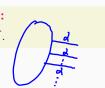
a stronger result

the above holds for every $(T, C \cup \{\varphi(f)\}\}, \varphi)$ -stable coloring.

Let T be a tree-sequence with respect to a k-triple (G, e, φ) .

Let T be a tree-sequence with respect to a k-triple (G, e, φ) .

defective color α , edge $f \in \partial(T)$, and vertex v: $|\partial_{\alpha}(T)| \ge 2$, $\varphi(f) = \alpha$, and v is an endvertex of f.



Let T be a tree-sequence with respect to a k-triple (G, e, φ) .

defective color α , edge $f \in \partial(T)$, and vertex v: $|\partial_{\alpha}(T)| \ge 2$, $\varphi(f) = \alpha$, and v is an endvertex of f.

free color α : $\alpha \in \overline{\varphi}(T)$ and $\alpha \notin \varphi(T)$.

(T_1, φ_0) and π_0 :

a Tashkinov tree w.r.t. e and a coloring φ satisfying the following conditions.

(T_1, φ_0) and π_0 :

a Tashkinov tree w.r.t. e and a coloring φ satisfying the following conditions.

IT₁ is maximum among all Tashkinov trees over all k-edge colorings in C^k(G − e).

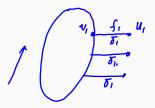
(T_1, φ_0) and π_0 :

a Tashkinov tree w.r.t. e and a coloring φ satisfying the following conditions.

- IT₁ is maximum among all Tashkinov trees over all k-edge colorings in C^k(G − e).
- T₁ is normal and closed. Assume T₁ is not strongly closed, otherwise we are done.

picking up a special edge

Along to the order \prec of T, let v_1 be the largest defective vertex. Assume v_1 is maximum over all $(T_1, \emptyset, \varphi)$ -stable colorings. Let $f_1 \in \partial(T_1)$ incident to v_1 such that $\pi_0(f_1) = \delta_1$ is a defective color. Let u_1 be the other endvertex of f_1 .



Along to the order \prec of T, let v_1 be the largest defective vertex. Assume v_1 is maximum over all $(T_1, \emptyset, \varphi)$ -stable colorings. Let $f_1 \in \partial(T_1)$ incident to v_1 such that $\pi_0(f_1) = \delta_1$ is a defective color. Let u_1 be the other endvertex of f_1 .

Case 1: $V(T) \cup \{u_1\}$ is normal for all $(T_1, \{\delta_1\}, \pi_0)$ -stable colorings: let T_2 be a closure of $T_1 + (f_1, u_1)$ under a coloring φ_1 such that T_2 is maximum over all $(T_1, \{\delta_1\}, \pi_0)$ -stable colorings. Along to the order \prec of T, let v_1 be the largest defective vertex. Assume v_1 is maximum over all $(T_1, \emptyset, \varphi)$ -stable colorings. Let $f_1 \in \partial(T_1)$ incident to v_1 such that $\pi_0(f_1) = \delta_1$ is a defective color. Let u_1 be the other endvertex of f_1 .

Case 1: $V(T) \cup \{u_1\}$ is normal for all $(T_1, \{\delta_1\}, \pi_0)$ -stable colorings: let T_2 be a closure of $T_1 + (f_1, u_1)$ under a coloring φ_1 such that T_2 is maximum over all $(T_1, \{\delta_1\}, \pi_0)$ -stable colorings.

name it SE:

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\delta_1\}$ – connecting color $F_1 = \{f_1\}$ – connecting edge $\Theta_1 = SE$ – extension type.}

$T_2, \varphi_1 \dots PE$

Case 2: There is a color $\gamma_1 \in \overline{\pi}'(T_1) \cap \overline{\pi}'(u_1)$ for some $(T_1, \{\delta_0\}, \pi_0)$ -stable coloring π' :

We may assume $\gamma_1 \in \overline{\pi}'_0(v_1) \cap \overline{\pi}_0(u_1)$, and so path $P_1 = v_1 f_1 u_1$ is an $(T_1, \pi', \{\gamma_1, \delta_1\})$ -exit path.

$T_2, \varphi_1 \dots PE$

Case 2: There is a color $\gamma_1 \in \overline{\pi}'(T_1) \cap \overline{\pi}'(u_1)$ for some $(T_1, \{\delta_0\}, \pi_0)$ stable coloring π' :

We may assume $\gamma_1 \in \overline{\pi}'_0(v_1) \cap \overline{\pi}_0(u_1)$, and so path $P_1 = v_1 f_1 u_1$ is an $(T_1, \pi', \{\gamma_1, \delta_1\})$ -exit path. $\gamma \leftrightarrow \delta_1$ Simile

exiting property:

Kempe change for any $(T_1, \{\delta_1\}, \pi_1)$ -stable coloring π^* and any missing color $\gamma_1 \in \overline{\pi}^*(v_1)$, vertex v_1 is a $(T_1, \pi^*, \{\gamma_1, \delta_1\})$ -exit, i.e., the (γ_1, δ_1) -chain $P_{v_1}(\gamma_1, \delta_1)$ at v_1 is a path and $V(P_{v_1}(\gamma_1, \delta_1) \cap V(T_1) = 1$.

$T_2, \varphi_1 \dots PE$

Case 2: There is a color $\gamma_1 \in \overline{\pi}'(T_1) \cap \overline{\pi}'(u_1)$ for some $(T_1, \{\delta_0\}, \pi_0)$ -stable coloring π' :

We may assume $\gamma_1 \in \overline{\pi}'_0(v_1) \cap \overline{\pi}_0(u_1)$, and so path $P_1 = v_1 f_1 u_1$ is an $(T_1, \pi', \{\gamma_1, \delta_1\})$ -exit path.

exiting property:

for any $(T_1, \{\delta_1\}, \pi_1)$ -stable coloring π^* and any missing color $\gamma_1 \in \overline{\pi}^*(v_1)$, vertex v_1 is a $(T_1, \pi^*, \{\gamma_1, \delta_1\})$ -exit, i.e., the (γ_1, δ_1) -chain $P_{v_1}(\gamma_1, \delta_1)$ at v_1 is a path and $V(P_{v_1}(\gamma_1, \delta_1) \cap V(T_1) = 1$.

T_2 :

pick up a $(T_1, \{\delta_1\}, \pi_0)$ -stable coloring π'_0 , let $\varphi_1 = \pi'_0/P_{\nu_1}(\gamma_1, \delta_1)$, and let T_2 be the closure of $T_1(\nu_1)$ under coloring φ_1 .

$T_2, \varphi_1 \dots PE$

Case 2: There is a color $\gamma_1 \in \overline{\pi}'(T_1) \cap \overline{\pi}'(u_1)$ for some $(T_1, \{\delta_0\}, \pi_0)$ -stable coloring π' :

We may assume $\gamma_1 \in \overline{\pi}'_0(v_1) \cap \overline{\pi}_0(u_1)$, and so path $P_1 = v_1 f_1 u_1$ is an $(T_1, \pi', \{\gamma_1, \delta_1\})$ -exit path.

exiting property:

for any $(T_1, \{\delta_1\}, \pi_1)$ -stable coloring π^* and any missing color $\gamma_1 \in \overline{\pi}^*(v_1)$, vertex v_1 is a $(T_1, \pi^*, \{\gamma_1, \delta_1\})$ -exit, i.e., the (γ_1, δ_1) -chain $P_{v_1}(\gamma_1, \delta_1)$ at v_1 is a path and $V(P_{v_1}(\gamma_1, \delta_1) \cap V(T_1) = 1$.

T_2 :

pick up a $(T_1, \{\delta_1\}, \pi_0)$ -stable coloring π'_0 , let $\varphi_1 = \pi'_0/P_{\nu_1}(\gamma_1, \delta_1)$, and let T_2 be the closure of $T_1(\nu_1)$ under coloring φ_1 .

maximality:

We pick up coloring π'_0 such that $|T_2|$ is maximum over all $(T_1, \{\delta_1\}, \pi_0)$ -stable colorings.

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\gamma_1, \delta\}$ -connecting colors $F_1 = \{f_1\}$ -connecting edge $\Theta_1 = PE$ – extension type.

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\gamma_1, \delta\}$ -connecting colors $F_1 = \{f_1\}$ -connecting edge $\Theta_1 = PE$ – extension type.

(γ_1, δ_1) -chains:

recall two properties:

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\gamma_1, \delta\}$ -connecting colors $F_1 = \{f_1\}$ -connecting edge $\Theta_1 = PE$ – extension type.

 (γ_1, δ_1) -chains: recall two properties:

 interchangeability property: all, except one, (γ₁, δ₁)-chains intersecting T₁ are cycles;

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\gamma_1, \delta\}$ -connecting colors $F_1 = \{f_1\}$ -connecting edge $\Theta_1 = PE$ – extension type.

 (γ_1, δ_1) -chains:

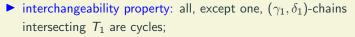
recall two properties:

 interchangeability property: all, except one, (γ₁, δ₁)-chains intersecting T₁ are cycles;

• exiting property: $P_{\nu_1}(\gamma_1, \delta_1)$ is an exiting path.

Define $(T_2, \varphi_1, S_1, F_1, \Theta_1)$, where $S_1 = \{\gamma_1, \delta\}$ -connecting colors $F_1 = \{f_1\}$ -connecting edge $\Theta_1 = PE$ – extension type.

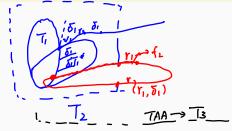
 (γ_1, δ_1) -chains: recall two properties:



- exiting property: $P_{v_1}(\gamma_1, \delta_1)$ is an exiting path.
- Let Q₁ denote the set of all (γ₁, δ₁)-cycles intersecting T₁. Then, all vertices v ∈ V(T₁)\{v₁} are on Q for some Q ∈ Q₁.

(Y1, 51)

Let $f_2 \in \partial_{\gamma_1}(T_2)$ such that there is a path Q with colors γ_1, δ_1 in T_2 connecting f_2 and T_1 . Let T_3 be the closure of $T_2 + f_2$ under the coloring φ_2 and define $S_2 = S_1$, $F_2 = \{f_1, f_2\}$ and $\Theta_3 = RE$, subject to



Let $f_2 \in \partial_{\gamma_1}(T_2)$ such that there is a path Q with colors γ_1, δ_1 in T_2 connecting f_2 and T_1 . Let T_3 be the closure of $T_2 + f_2$ under the coloring φ_2 and define $S_2 = S_1$, $F_2 = \{f_1, f_2\}$ and $\Theta_3 = RE$, subject to

 $|T_3|$ is maximum over all (T_2, S_2, φ_1) -stable colorings:

Let $f_2 \in \partial_{\gamma_1}(T_2)$ such that there is a path Q with colors γ_1, δ_1 in T_2 connecting f_2 and T_1 . Let T_3 be the closure of $T_2 + f_2$ under the coloring φ_2 and define $S_2 = S_1$, $F_2 = \{f_1, f_2\}$ and $\Theta_3 = RE$, subject to

$|T_3|$ is maximum over all (T_2, S_2, φ_1) -stable colorings:

Otherwise, let φ₂^{*} be a (T₂, S₂, φ₁)-stable coloring with closure T₃^{*} such that |T₃^{*}| > |T₃|.

Let $f_2 \in \partial_{\gamma_1}(T_2)$ such that there is a path Q with colors γ_1, δ_1 in T_2 connecting f_2 and T_1 . Let T_3 be the closure of $T_2 + f_2$ under the coloring φ_2 and define $S_2 = S_1$, $F_2 = \{f_1, f_2\}$ and $\Theta_3 = RE$, subject to

$|T_3|$ is maximum over all (T_2, S_2, φ_1) -stable colorings:

- Otherwise, let φ₂^{*} be a (T₂, S₂, φ₁)-stable coloring with closure T₃^{*} such that |T₃^{*}| > |T₃|.
- Since φ^{*}₂ is also (T₁, S₁, φ₁)-stable, so in the extension T₁ → T₂ (PE) we would have picked φ^{*}₂ instead of φ₁, a contradiction.

Let $f_2 \in \partial_{\gamma_1}(T_2)$ such that there is a path Q with colors γ_1, δ_1 in T_2 connecting f_2 and T_1 . Let T_3 be the closure of $T_2 + f_2$ under the coloring φ_2 and define $S_2 = S_1$, $F_2 = \{f_1, f_2\}$ and $\Theta_3 = RE$, subject to

$|T_3|$ is maximum over all (T_2, S_2, φ_1) -stable colorings:

- Otherwise, let φ₂^{*} be a (T₂, S₂, φ₁)-stable coloring with closure T₃^{*} such that |T₃^{*}| > |T₃|.
- Since φ^{*}₂ is also (T₁, S₁, φ₁)-stable, so in the extension T₁ → T₂ (PE) we would have picked φ^{*}₂ instead of φ₁, a contradiction.

formal statements:

With the above preparation, we will give the definition of Tashkinov series $(T_n, \varphi_{n-1}, S_{n-1}, F_{n-1}, \Theta_{n-1})$, where the maximality property will be defined separately.

 $(T_1, \varphi_0, S_0, F_0, \Theta_0)$: $\varphi_0 = \varphi \in C^k(G - e_1), T_1$ is a closure of e by applying TAA under φ_0 , and $S_0 = F_0 = \Theta_0 = \emptyset$. Suppose that we have defined $(T_n, \varphi_{n-1}, S_{n-1}, F_{n-1}\Theta_{n-1})$. $(T_1, \varphi_0, S_0, F_0, \Theta_0)$: $\varphi_0 = \varphi \in C^k(G - e_1), T_1$ is a closure of e by applying TAA under φ_0 , and $S_0 = F_0 = \Theta_0 = \emptyset$. Suppose that we have defined $(T_n, \varphi_{n-1}, S_{n-1}, F_{n-1}\Theta_{n-1})$.

Iteration n:

If T_n is strongly closed with respect to φ_{n-1} , stop. Else, we construct the tuple $(T_{n+1}, \varphi_n, S_n, F_n, \Theta_n)$ as follows. Set $D_{n-1} = \bigcup_{i \leq n-1} S_i - \overline{\varphi}_{n-1}(T_{n-1})$ (so $D_0 = \emptyset$).

the condition for RE:

If there is a subscript $h \le n-1$ with $\Theta_h = PE$ and $S_h = \{\delta_h, \gamma_h\}$, such that some (γ_h, δ_h) -cycle O with respect to φ_{n-1} intersects both $V(T_h)$ and $V(G) - V(T_n)$, apply **RE**.

the condition for RE:

If there is a subscript $h \le n-1$ with $\Theta_h = PE$ and $S_h = \{\delta_h, \gamma_h\}$, such that some (γ_h, δ_h) -cycle O with respect to φ_{n-1} intersects both $V(T_h)$ and $V(G) - V(T_n)$, apply **RE**.

RE:

Let f_n be an edge in $O \cap \partial(T_n)$ such that O contains a path L connecting f_n and $V(T_h)$ with $V(L) \subseteq V(T_n)$. Let $\varphi_n = \varphi_{n-1}$ and T_{n+1} be a closure of $T_n + f_n$ under φ_n . Set $\delta_n = \delta_h$, $\gamma_n = \gamma_h$, $S_n = \{\delta_n, \gamma_n\}$, $F_n = \{f_n\}$, and $\Theta_n = RE$.

the condition for RE:

If there is a subscript $h \le n-1$ with $\Theta_h = PE$ and $S_h = \{\delta_h, \gamma_h\}$, such that some (γ_h, δ_h) -cycle O with respect to φ_{n-1} intersects both $V(T_h)$ and $V(G) - V(T_n)$, apply **RE**.

Else,

let v_n be the maximum defective vertex in the order \prec over all $(T_n, D_{n-1}, \varphi_{n-1})$ -stable colorings, let π_{n-1} be a corresponding coloring, let f_n be a defective edge (of T_n with respect to π_{n-1}) incident to v_n , let u_n be the other end of f_n , and let $\delta_n = \pi_{n-1}(f_n)$.

the condition for SE:

for every $(T_n, D_{n-1} \cup \{\delta_n\}, \pi_{n-1})$ -stable coloring π , we have $\overline{\pi}(u_n) \cap \overline{\pi}(T_n) = \emptyset$

the condition for SE:

for every $(T_n, D_{n-1} \cup \{\delta_n\}, \pi_{n-1})$ -stable coloring π , we have $\overline{\pi}(u_n) \cap \overline{\pi}(T_n) = \emptyset$

SE:

Let $\varphi_n = \pi_{n-1}$ and let T_{n+1} be a closure of $T_n + f_n$ under φ_n . Set $S_n = \{\delta_n\}$, $F_n = \{f_n\}$, and $\Theta_n = SE$.

the condition for SE:

for every $(T_n, D_{n-1} \cup \{\delta_n\}, \pi_{n-1})$ -stable coloring π , we have $\overline{\pi}(u_n) \cap \overline{\pi}(T_n) = \emptyset$

SE:

Let $\varphi_n = \pi_{n-1}$ and let T_{n+1} be a closure of $T_n + f_n$ under φ_n . Set $S_n = \{\delta_n\}$, $F_n = \{f_n\}$, and $\Theta_n = SE$.

else

,

the preparation for PE:

pick a color γ_n in $\overline{\pi}_{n-1}(v_n)$ as follows. If $v_n = v_i$ for some $1 \le i < n$ with $\Theta_i = PE$, let n' be the largest such i and let $\gamma_n = \delta_{n'}$. Otherwise, let γ_n be an arbitrary color in $\overline{\pi}_{n-1}(v_n)$. Let π'_{n-1} be an arbitrary $(T_n, D_{n-1} \cup \{\delta_n\}, \pi_{n-1})$ -stable coloring so that v_n is a $(T_n, \pi'_{n-1}, \{\gamma_n, \delta_n\})$ -exit

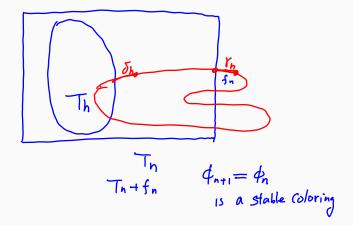
the preparation for PE:

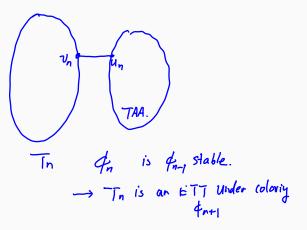
pick a color γ_n in $\overline{\pi}_{n-1}(v_n)$ as follows. If $v_n = v_i$ for some $1 \le i < n$ with $\Theta_i = PE$, let n' be the largest such i and let $\gamma_n = \delta_{n'}$. Otherwise, let γ_n be an arbitrary color in $\overline{\pi}_{n-1}(v_n)$. Let π'_{n-1} be an arbitrary $(T_n, D_{n-1} \cup \{\delta_n\}, \pi_{n-1})$ -stable coloring so that v_n is a $(T_n, \pi'_{n-1}, \{\gamma_n, \delta_n\})$ -exit

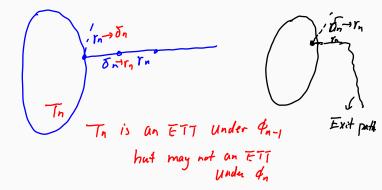
PE:

Let $\varphi_n = \pi'_{n-1}/P_{\nu_n}(\gamma_n, \delta_n, \pi'_{n-1})$. Let T_{n+1} be a closure of T_n under φ_n . Set $S_n = \{\delta_n, \gamma_n\}$, $F_n = \{f_n\}$, and $\Theta_n = PE$.

ETT <u>*T* of layer *n*:</u> $T_n \subseteq T \subset T_{n+1}$ for a Tashkinov Series $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}.$







Let $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$ be a Tashkinov series and $\sigma_n \in \mathcal{C}^k(G - e_1)$.

Let $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$ be a Tashkinov series and $\sigma_n \in \mathcal{C}^k(G - e_1)$.

$\sigma_n: \varphi_n \mod T_n:$

if every tree-sequence $T^* \supset T_n$ obtained from $T_n + f_n$ (resp. T_n) by TAA under σ_n when $\Theta_n = RE$ or SE (resp. when $\Theta_n = PE$) is an ETT under σ_n , with a corresponding Tashkinov series $\{(T_i^*, \sigma_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$, satisfying the following conditions for all *i* with $1 \le i \le n$:

Let $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$ be a Tashkinov series and $\sigma_n \in \mathcal{C}^k(G - e_1)$.

$\sigma_n: \varphi_n \mod T_n:$

if every tree-sequence $T^* \supset T_n$ obtained from $T_n + f_n$ (resp. T_n) by TAA under σ_n when $\Theta_n = RE$ or SE (resp. when $\Theta_n = PE$) is an ETT under σ_n , with a corresponding Tashkinov series $\{(T_i^*, \sigma_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$, satisfying the following conditions for all *i* with $1 \le i \le n$:

$$\blacktriangleright T_i^* = T_i$$

Let $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$ be a Tashkinov series and $\sigma_n \in \mathcal{C}^k(G - e_1)$.

$\sigma_n: \varphi_n \mod T_n:$

if every tree-sequence $T^* \supset T_n$ obtained from $T_n + f_n$ (resp. T_n) by TAA under σ_n when $\Theta_n = RE$ or SE (resp. when $\Theta_n = PE$) is an ETT under σ_n , with a corresponding Tashkinov series $\{(T_i^*, \sigma_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n + 1\}$, satisfying the following conditions for all *i* with $1 \le i \le n$:

Let $\{(T_i, \varphi_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$ be a Tashkinov series and $\sigma_n \in \mathcal{C}^k(G - e_1)$.

$\sigma_n: \varphi_n \mod T_n:$

if every tree-sequence $T^* \supset T_n$ obtained from $T_n + f_n$ (resp. T_n) by TAA under σ_n when $\Theta_n = RE$ or SE (resp. when $\Theta_n = PE$) is an ETT under σ_n , with a corresponding Tashkinov series $\{(T_i^*, \sigma_{i-1}, S_{i-1}, F_{i-1}, \Theta_{i-1}) : 1 \le i \le n+1\}$, satisfying the following conditions for all *i* with $1 \le i \le n$:

 (σ_n, T_n) -**ETT:** T^* is called an ETT *corresponding* to (σ_n, T_n)

maximality property

an ETT ${\mathcal T}$ has the maximum property (MP) under φ_n : if

maximality property

an ETT \mathcal{T} has the maximum property (MP) under φ_n : if

▶ $|T_1|$ is maximum among all Tashkinov trees T'_1 with respect to an edge $e' \in E$ and a coloring $\varphi'_0 \in C^k(G - e')$,

an ETT ${\mathcal T}$ has the maximum property (MP) under φ_n : if

- ▶ $|T_1|$ is maximum among all Tashkinov trees T'_1 with respect to an edge $e' \in E$ and a coloring $\varphi'_0 \in C^k(G e')$,
- |T_{i+1}| is maximum over all (T_i, D_i, φ_i)-stable colorings for any i with 1 ≤ i ≤ n − 1;

an ETT ${\mathcal T}$ has the maximum property (MP) under φ_n : if

- ▶ $|T_1|$ is maximum among all Tashkinov trees T'_1 with respect to an edge $e' \in E$ and a coloring $\varphi'_0 \in C^k(G e')$,
- IT_{i+1} is maximum over all (T_i, D_i, φ_i)-stable colorings for any i with 1 ≤ i ≤ n − 1;
- ▶ that is, |T_{i+1}| is maximum over all tree-sequences T'_{i+1}, which is a closure of T_i + f_i (resp. T_i) under a (T_i, D_i, φ_i)-stable coloring φ'_i if Θ_i = RE or SE (resp. if Θ_i = PE), where f_i is the connecting edge in F_i.

an ETT T has the maximum property (MP) under φ_n : if

- ▶ $|T_1|$ is maximum among all Tashkinov trees T'_1 with respect to an edge $e' \in E$ and a coloring $\varphi'_0 \in C^k(G e')$,
- IT_{i+1} is maximum over all (T_i, D_i, φ_i)-stable colorings for any i with 1 ≤ i ≤ n − 1;
- that is, |T_{i+1}| is maximum over all tree-sequences T'_{i+1}, which is a closure of T_i + f_i (resp. T_i) under a (T_i, D_i, φ_i)-stable coloring φ'_i if Θ_i = RE or SE (resp. if Θ_i = PE), where f_i is the connecting edge in F_i.

Note:

In the above definition $|T_{n+1}|$ is not required to be maximum over all (T_n, D_n, φ_n) -stable colorings.

normality:

V(T) is normal with respect to φ_n .

normality: V(T) is normal with respect to φ_n .

interchaneability

For any two colors α, β with $\overline{\varphi}_n(T_n) \cap \{\alpha, \beta\} \neq \emptyset$, there is exactly one (α, β) -path intersecting $V(T_n)$.

normality: V(T) is normal with respect to φ_n .

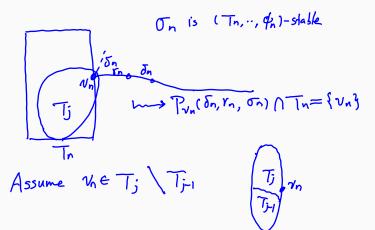
interchaneability

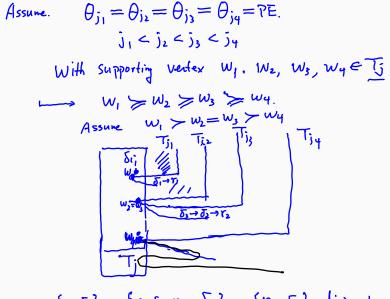
For any two colors α, β with $\overline{\varphi}_n(T_n) \cap \{\alpha, \beta\} \neq \emptyset$, there is exactly one (α, β) -path intersecting $V(T_n)$.

exiting path

If $\Theta_n = PE$, then $P_{v_n}(\gamma_n, \delta_n, \sigma_n)$ contains precisely one vertex, v_n , from T_n for any (T_n, D_n, φ_n) -stable coloring σ_n .

Proof of exit path property:





fri, 5,3 fr, 5,=r3, 533, fr4, 54} disjoint.

color YI (YI, SI) Vestore missing (1,51) kempe change 8.51 cr1, 5.1 j2 1

Vestore Missing color Tz (r3, Js)-eyeby (Y2, 5=5) IT in W. . l i i > (5, 1, 1 2,02 Wu

