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General setting



the theorem

the theorem:

If χ′(G ) ≥ ∆(G ) + 2 then χ′(G ) = ω(G ),

where

ω(G ) = ⌈ω∗(G )⌉

ω∗(G ) = max

{
2|E (H)|
|H| − 1

: H ⊆ G , |H| ≥ 3 and odd

}

Assuming:

G is a critical graph, χ′(G ) = k + 1 ≥ ∆(G ) + 2, e ∈ E (G ) and

φ ∈ Ck(G − e) is a k-edge coloring of G − e.
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some basic notation on coloring

▶ φ(H) = ∪e∈E(H)φ(e).

▶ φ(v) = φ(∂(v)), the set of colors present at v

φ(v) = [k]− φ(v), the set of colors missing at v .

▶ For each X ⊆ V (G ), define φ(X ) = ∪x∈Xφ(x).
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normal, closed, and strongly closed

U ⊆ V normal:

φ(u) ∩ φ(v) = ∅ for any two distinct vertices u, v ∈ U.

U closed:

U does not have lobes.

U strongly closed:

closed and colors on ∂(U) are distinct, i.e., |∂α(U)| ≤ 1 for each color

α.
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subject

goal:

Find a U ⊆ V (G ) with e ∈ E [U] which is both normal and strongly

closed.

Eα(U) is a near-perfect matching for G [U] for every color α ∈ [k].

ω∗(G ) > k:

|E [U]| = k(|U| − 1)/2 + 1.
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Tashkinov tree



Tashkinov tree

Definition

A Tashkinov tree with respect to e and φ is a sequence

T = (y0, e1, y1, . . . , ep, yp) with p ≥ 1:

(T1) The vertices y0, . . . , yp are distinct, e1 = e and and for i = 1, . . . , p,

we have ei ∈ EG ({y0, . . . , yi−1}, yi ).
(T2) For every i ≥ 2, φ(ei ) ∈ φ(yh) for some h < i .

order ≺T :

The definition of Tashkinov tree also give a linear order of its vertices

and edges.

Theorem (Tashkinov, 2000)

V (T ) is elementary provided χ′(G ) = k + 1∆(G ) + 2 and e is a critical

edge, and φ ∈ Ck(G − e).
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proof of Tashkinov theorem
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maximal Tashkinov trees – closure:

Observation:

all maximal Tashkinov trees are closed (its vertex set) and have the

same set of vertices.

Question:

Whether there is an e ∈ E (G ) and a coloring φ ∈ Ck(G − e) such that

its maximal Tashkinov tree is strongly closed?

problem:

Can we find a way to extend a Tashkinov tree to a strongly closed set,

but keep the normality?
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too many missing colors

|X | ≤ k/(k −∆):

for every elementary set X such that e ∈ E [X ].

Proof.

Otherwise, since |φ(v)| ≥ k −∆ and . . . , we have

k ≥
∑

v∈X |φ(x)|+ 2 > |X |(k −∆) > k, a contradiction.

Scheide, 2010, C., Yu and Zang, 2009:

If χ′(G ) ≥ ∆+
√
∆/2, then χ′(G ) = ω(G ).
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Scheide’s proof

Proof.

▶ Suppose there does not exist a strongly closed maximal Tashkinov

tree.

▶ There is a maximal Tashkinov tree T and a vertex v ∈ V (T ) such

that φ(v) ⊆ φ(E (T )), and moreover, each color in φ(v) appears at

least twice on E (T )

▶ |V (T )| ≥ 2(k −∆) + 2

▶ |φ(V (T )| =
∑

v∈V (T ) 2|φ(v)| > 2|V (T )| · (k −∆) > k,

a contradiction.
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an extension

TAA algorithm:

Suppose we have a tree sequence T = (y0, e1, y1, . . . , ep, yp) and

f ∈ ∂(T ). If φ(f ) ∈ φ(T ), let

T := T + f = (y0, e1, y1, . . . , ep, yp, f , yp+1), where yp+1 is the end of f

outside T .

Tashkinov tree T :

starting with V (e), apply TAAs repeadily.

extension of Tashkinov tree under a fixed coloring:

▶ Let T1 be a maximal Tashkinov tree. If T1 is strongly closed, stop;

otherwise,

▶ find an edge f1 ∈ ∂(T1) and add f to T , and apply TAA to T + f1
to get a closed tree sequence T2. If T2 is strongly closed, stop; other

wise

▶ T3 . . .
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bounded by |φ(T1)|

C., Gao, Kim, Postle, and Shan, 2019:

Suppose χ′(G ) ̸= ω(G ). For every extended Tashkinov tree T we have

|E (T )| > 2|φ(T1)|.

Corollary

If χ′(G ) ≥ ∆+ 3
√
∆/2, then χ′(G ) = ω(G ).

Proof.

▶ by Scheide’s theorem, |T1| ≥ 2|φ(v)| ≥ 2(k −∆) for some

v ∈ V (T1);

▶ |T | ≥ |φ(T1)| > 2(k −∆)2.

▶ |φ(T )| > |T |(k −∆)2 ≥ 2(k −∆)3.
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the first vertices

Let T1 ⊂ T2 ⊂ T3 · · · ⊂ Tn ⊂ Tn+1, and vi ∈ V (Ti+1) is the first vertex

added to Ti .

C., Jing, 2019:

Under some reasonable conditions, if we can prove that Ti + vi is

elementary, then Ti+1 is elementary.

difficulties:

▶ We CANNOT prove Ti + vi is elementary in general.

▶ We cannot restrict our consideration to one coloring φ or a few

colorings related to it.
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the structure of extension



a property of maximal Tashkinov tree

Lemma

Let (G , e, φ) be a k-triple, let T be a maximal Tashkinov tree with

respect to e and φ, and let α and β be two colors in [k] with

φ(T ) ∩ {α, β} ≠ ∅. Then there is at most one (α, β)-path with respect

to φ intersecting T .

proof

Assume the contrary: there are at least two (α, β)-paths Q1 and Q2

with respect to φ intersecting T . Since V (T ) is normal and closed,

precisely one of α and β, say α, is in φ(T ). Thus at least three ends of

Q1 and Q2 are outside T . Traversing Q1 and Q2 from these ends

respectively, we can find at least three (T , φ, {α, β})-exit paths
P1,P2,P3. We call the tuple (φ,T , α, β,P1,P2,P3) a counterexample

and use K to denote the set of all such counterexamples.
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let (φ,T , α, β,P1,P2,P3) be a counterexample in K with the minimum

|P1|+ |P2|+ |P3|.

15
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colorings?

Let T be a maximal Tashkinov tree w.r.t. e and φ ∈ Ck(G − e).

▶ We want to find a vertex u1 such that V (T1) ∪ {u1} is normal

▶ Normal w.r.t. which coloring?

▶ We cannot say for all colorings in Ck(G − e)

▶ Special colorings?
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stable coloring

a (T ,C , φ)-stable coloring π:

A coloring satisfying the following two conditions.

(i) π(f ) = φ(f ) for any f ∈ E incident to T with φ(f ) ∈ φ(T ) ∪ C ;

and
(ii) π(v) = φ(v) for any v ∈ V (T ).

Lemma

Being (T ,C , ·)-stable is an equivalence relation on Ck(G − e).

Lemma

Suppose T is closed but not strongly closed with respect to φ, with

|V (T )| odd. If π is a (T ,C , φ)-stable coloring, then T is also closed

but not strongly closed with respect to π.

18
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exit path

exit path of T :

a path intersects T at exactly one vertex.

Lemma

Suppose T is closed with respect to φ, and f ∈ E (u, v) is an edge in

∂(T ) with v ∈ V (T ). If there exists a (T ,C ∪ {φ(f )}, φ)-stable
coloring π, such that π(u) ∩ π(T ) ̸= ∅, then for any α ∈ φ(v) there

exists a (T ,C ∪ {φ(f )}, φ)-stable coloring σ, such that v is a

(T , σ, {α,φ(f )})-exit.

a stronger result

the above holds for every (T ,C ∪ {φ(f )}}, φ)-stable coloring.
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defectiveness

Let T be a tree-sequence with respect to a k-triple (G , e, φ).

defective color α, edge f ∈ ∂(T ), and vertex v :

|∂α(T )| ≥ 2, φ(f ) = α, and v is an endvertex of f .

free color α:

α ∈ φ(T ) and α /∈ φ(T ).
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T1

Let G be a graph such that χ′(G ) = k + 1 ≥ ∆(G ) + 2 and e1 be a

critical edge.

(T1, φ0) and π0:

a Tashkinov tree w.r.t. e and a coloring φ satisfying the following

conditions.

▶ |T1| is maximum among all Tashkinov trees over all k-edge colorings

in Ck(G − e).

▶ T1 is normal and closed. Assume T1 is not strongly closed,

otherwise we are done.
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picking up a special edge

Along to the order ≺ of T , let v1 be the largest defective vertex. Assume

v1 is maximum over all (T1, ∅, φ)-stable colorings. Let f1 ∈ ∂(T1)

incident to v1 such that π0(f1) = δ1 is a defective color. Let u1 be the

other endvertex of f1.

Case 1: V (T )∪{u1} is normal for all (T1, {δ1}, π0)-stable colorings:

let T2 be a closure of T1 + (f1, u1) under a coloring φ1 such that

T2 is maximum over all (T1, {δ1}, π0)-stable colorings.

name it SE:

Define (T2, φ1,S1,F1,Θ1), where

S1 = {δ1} – connecting color

F1 = {f1} – connecting edge

Θ1 = SE – extension type.}
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T2, φ1 . . .PE

Case 2: There is a color γ1 ∈ π′(T1)∩π′(u1) for some (T1, {δ0}, π0)-

stable coloring π′:

We may assume γ1 ∈ π′
0(v1) ∩ π0(u1), and so path P1 = v1f1u1 is an

(T1, π
′, {γ1, δ1})-exit path.

exiting property:

for any (T1, {δ1}, π1)-stable coloring π∗ and any missing color

γ1 ∈ π∗(v1), vertex v1 is a (T1, π
∗, {γ1, δ1})-exit, i.e., the (γ1, δ1)-chain

Pv1(γ1, δ1) at v1 is a path and V (Pv1(γ1, δ1) ∩ V (T1) = 1.

T2:

pick up a (T1, {δ1}, π0)-stable coloring π′
0, let φ1 = π′

0/Pv1(γ1, δ1), and

let T2 be the closure of T1(v1) under coloring φ1.

maximality:

We pick up coloring π′
0 such that |T2| is maximum over all

(T1, {δ1}, π0)-stable colorings.
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T2-II

name it PE :

Define (T2, φ1,S1,F1,Θ1), where

S1 = {γ1, δ}-connecting colors

F1 = {f1} -connecting edge

Θ1 = PE – extension type.

(γ1, δ1)-chains:

recall two properties:

▶ interchangeability property: all, except one, (γ1, δ1)-chains

intersecting T1 are cycles;

▶ exiting property: Pv1(γ1, δ1) is an exiting path.

▶ Let Q1 denote the set of all (γ1, δ1)-cycles intersecting T1. Then, all

vertices v ∈ V (T1)\{v1} are on Q for some Q ∈ Q1.
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RE:

Case R: V (Q)− V (T2) ̸= ∅:
Let f2 ∈ ∂γ1(T2) such that there is a path Q with colors γ1, δ1 in T2

connecting f2 and T1. Let T3 be the closure of T2 + f2 under the

coloring φ2 and define S2 = S1, F2 = {f1, f2} and Θ3 = RE , subject to

|T3| is maximum over all (T2,S2, φ1)-stable colorings:

▶ Otherwise, let φ∗
2 be a (T2,S2, φ1)-stable coloring with closure T ∗

3

such that |T ∗
3 | > |T3|.

▶ Since φ∗
2 is also (T1,S1, φ1)-stable, so in the extension T1 → T2

(PE) we would have picked φ∗
2 instead of φ1, a contradiction.

formal statements:

With the above preparation, we will give the definition of Tashkinov

series (Tn, φn−1,Sn−1,Fn−1,Θn−1), where the maximality property will

be defined separately.
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ETT-1

(T1, φ0,S0,F0,Θ0):

φ0 = φ ∈ Ck(G − e1), T1 is a closure of e by applying TAA under φ0,

and S0 = F0 = Θ0 = ∅. Suppose that we have defined

(Tn, φn−1,Sn−1,Fn−1Θn−1).

Iteration n:

If Tn is strongly closed with respect to φn−1, stop. Else, we construct

the tuple (Tn+1, φn,Sn,Fn,Θn) as follows. Set

Dn−1 = ∪i≤n−1 Si − φn−1(Tn−1) (so D0 = ∅).
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the condition for RE:

If there is a subscript h ≤ n − 1 with Θh = PE and Sh = {δh, γh}, such
that some (γh, δh)-cycle O with respect to φn−1 intersects both V (Th)

and V (G )− V (Tn), apply RE.

RE:

Let fn be an edge in O ∩ ∂(Tn) such that O contains a path L

connecting fn and V (Th) with V (L) ⊆ V (Tn). Let φn = φn−1 and

Tn+1 be a closure of Tn + fn under φn. Set δn = δh, γn = γh,

Sn = {δn, γn}, Fn = {fn}, and Θn = RE .

Else,

let vn be the maximum defective vertex in the order ≺ over all

(Tn,Dn−1, φn−1)-stable colorings, let πn−1 be a corresponding coloring,

let fn be a defective edge (of Tn with respect to πn−1) incident to vn,

let un be the other end of fn, and let δn = πn−1(fn).
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SE

the condition for SE:

for every (Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring π, we have

π(un) ∩ π(Tn) = ∅

SE:

Let φn = πn−1 and let Tn+1 be a closure of Tn + fn under φn. Set

Sn = {δn}, Fn = {fn}, and Θn = SE .

else
,
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PE

the preparation for PE:

pick a color γn in πn−1(vn) as follows. If vn = vi for some 1 ≤ i < n

with Θi = PE , let n′ be the largest such i and let γn = δn′ . Otherwise,

let γn be an arbitrary color in πn−1(vn). Let π
′
n−1 be an arbitrary

(Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring so that vn is a

(Tn, π
′
n−1, {γn, δn})-exit

PE:

Let φn = π′
n−1/Pvn(γn, δn, π

′
n−1). Let Tn+1 be a closure of Tn under

φn. Set Sn = {δn, γn}, Fn = {fn}, and Θn = PE .
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Extended Tashkinov tree (ETT)

ETT T of layer n:

Tn ⊆ T ⊂ Tn+1 for a Tashkinov Series

{(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}.
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RE is good
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SE is good
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Problems with PE
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strongly related colorings

Let {(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series

and σn ∈ Ck(G − e1).

σn: φn mod Tn:

if every tree-sequence T ∗ ⊃ Tn obtained from Tn + fn (resp. Tn) by

TAA under σn when Θn = RE or SE (resp. when Θn = PE ) is an ETT

under σn, with a corresponding Tashkinov series

{(T ∗
i , σi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following

conditions for all i with 1 ≤ i ≤ n:

▶ T ∗
i = Ti

▶ σi is a (Ti ,Di , φi )-stable coloring in Ck(G − e1).

(σn,Tn)-ETT:

T ∗ is called an ETT corresponding to (σn,Tn)

34



strongly related colorings

Let {(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series

and σn ∈ Ck(G − e1).

σn: φn mod Tn:

if every tree-sequence T ∗ ⊃ Tn obtained from Tn + fn (resp. Tn) by

TAA under σn when Θn = RE or SE (resp. when Θn = PE ) is an ETT

under σn, with a corresponding Tashkinov series

{(T ∗
i , σi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following

conditions for all i with 1 ≤ i ≤ n:

▶ T ∗
i = Ti

▶ σi is a (Ti ,Di , φi )-stable coloring in Ck(G − e1).

(σn,Tn)-ETT:

T ∗ is called an ETT corresponding to (σn,Tn)

34



strongly related colorings

Let {(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series

and σn ∈ Ck(G − e1).

σn: φn mod Tn:

if every tree-sequence T ∗ ⊃ Tn obtained from Tn + fn (resp. Tn) by

TAA under σn when Θn = RE or SE (resp. when Θn = PE ) is an ETT

under σn, with a corresponding Tashkinov series

{(T ∗
i , σi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following

conditions for all i with 1 ≤ i ≤ n:

▶ T ∗
i = Ti

▶ σi is a (Ti ,Di , φi )-stable coloring in Ck(G − e1).

(σn,Tn)-ETT:

T ∗ is called an ETT corresponding to (σn,Tn)

34



strongly related colorings

Let {(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series

and σn ∈ Ck(G − e1).

σn: φn mod Tn:

if every tree-sequence T ∗ ⊃ Tn obtained from Tn + fn (resp. Tn) by

TAA under σn when Θn = RE or SE (resp. when Θn = PE ) is an ETT

under σn, with a corresponding Tashkinov series

{(T ∗
i , σi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following

conditions for all i with 1 ≤ i ≤ n:

▶ T ∗
i = Ti

▶ σi is a (Ti ,Di , φi )-stable coloring in Ck(G − e1).

(σn,Tn)-ETT:

T ∗ is called an ETT corresponding to (σn,Tn)

34



strongly related colorings

Let {(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series

and σn ∈ Ck(G − e1).

σn: φn mod Tn:

if every tree-sequence T ∗ ⊃ Tn obtained from Tn + fn (resp. Tn) by

TAA under σn when Θn = RE or SE (resp. when Θn = PE ) is an ETT

under σn, with a corresponding Tashkinov series

{(T ∗
i , σi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following

conditions for all i with 1 ≤ i ≤ n:

▶ T ∗
i = Ti

▶ σi is a (Ti ,Di , φi )-stable coloring in Ck(G − e1).

(σn,Tn)-ETT:

T ∗ is called an ETT corresponding to (σn,Tn)

34



maximality property

an ETT T has the maximum property (MP) under φn:

if

▶ |T1| is maximum among all Tashkinov trees T ′
1 with respect to an

edge e′ ∈ E and a coloring φ′
0 ∈ Ck(G − e′),

▶ |Ti+1| is maximum over all (Ti ,Di , φi )-stable colorings for any i

with 1 ≤ i ≤ n − 1;

▶ that is, |Ti+1| is maximum over all tree-sequences T ′
i+1, which is a

closure of Ti + fi (resp. Ti ) under a (Ti ,Di , φi )-stable coloring φ′
i if

Θi = RE or SE (resp. if Θi = PE ), where fi is the connecting edge

in Fi .

Note:

In the above definition |Tn+1| is not required to be maximum over all

(Tn,Dn, φn)-stable colorings.
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the main theorem -1

Let T be an ETT based on the Tashkinov series

{(Ti , φi−1,Si−1,Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. If T has MP under φn,

then the following statements hold:

normality:

V (T ) is normal with respect to φn.

interchaneability

For any two colors α, β with φn(Tn) ∩ {α, β} ≠ ∅, there is exactly one

(α, β)-path intersecting V (Tn).

exiting path

If Θn = PE , then Pvn(γn, δn, σn) contains precisely one vertex, vn, from

Tn for any (Tn,Dn, φn)-stable coloring σn.
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