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behind the theorem

the theorem:
If G is a k-critical graph with k > A(G) + 1, then for any edge
e € E(G), graph G — e is a disjoint union of k near-perfect matchings.

what does this mean?

Let ¢ be an k-edge-coloring of G — e and T; be a maximal Tashkinov
tree w.r.t. e and ¢

» V/(G) is normal, which gives three possibilities
V(Ty) = V(6)

T; is strongly closed

only SE-extensions are needed

Is there a simpler and much shorter proof?

vV V.yvYyVvy

Is there a polynomial-time coloring algorithm?
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basic definitions

weighted graph (G, f):
a (multi)graph G and a vertex-function £ : V(G) — N\{0}

f-matching M:

an edge set M C E(G) such that dy(v) < f(v) for each vertex

v e V(G)

f-coloring;:

an edge-coloring such that each color class is an f-matching of G.
i.e., an improper (edge-)coloring ¢ such that d, o(v) < f(v) for each
vertex v € V/(G) and each color «.

f-chromatic index, x}(G):

the least integer k > 0 such that there is an f-coloring using k colors.
f(v)=1:

a traditional (proper) edge-coloring of G.



applications

The f-coloring has broader applications than the ordinary edge
coloring:

for example, the file transfer problem in a computer network. In the
model a vertex of a graph G represents a computer, and an edge does a
file which one wish to transfer between the two computers
corresponding to its ends. The integer f(v) is the number of
communication ports available at a computer v. The edges colored
with the same color represent files that can be transferred in the
network simultaneously. Thus an f-coloring of G using minimum
number of colors corresponds to the scheduling of the transfers with the
minimum fishing time.



applications

The f-coloring has broader applications than the ordinary edge
coloring:

for example, the file transfer problem in a computer network. In the
model a vertex of a graph G represents a computer, and an edge does a
file which one wish to transfer between the two computers
corresponding to its ends. The integer f(v) is the number of
communication ports available at a computer v. The edges colored
with the same color represent files that can be transferred in the
network simultaneously. Thus an f-coloring of G using minimum
number of colors corresponds to the scheduling of the transfers with the
minimum fishing time.

one more example:

How wavelet assignment problems in so-called multi-fiber WDM
networks can be modeled by means of the f color problem is explained
in Koster.
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more notation

CK(G):

the set of all f-coloring of G with color set [k] = {1, ..

maximum f-degree:

AF(G) = maxyev(e) LU and Ar(G) = [A5(6)].

a lower bound:
X7 (G) = A¢(G).
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some upper bounds

Hakimi and Kariv, 1986:
if G is a bipartite graph then x}(G) = A¢(G).

Hakimi and Kariv, 1986:

X5(G) < max, vev(q) [%—‘ (a Vizing type thoerem)

Hakimi and Kariv, 1986:
If £(v) is even for every vertex v € V/(G), then x:(G) = A¢(G).
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f(H):
f(H) = EVGV(H) f(v)
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f-density

f(H) = ZvGV(H) f(v)

fractional f-density w;(G):

IE(H)
HCG,[H>2 | f(H)/2]
if |G| > 2 and wf(G) = 0 otherwise.

wi(G) =

density wr(G):
wr(G) = [wi(G)].

another lower bound
X5(G) > wr(G), and so
X¢(G) > max{A¢(G),w(G)}.
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X'(6) < max{A(G) +1,w(G)}

Nakano, Nishizeki, and Saito, 1988:
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the Goldberg-Seymour conjecture for f-coloring
Nakano, Nishizeki, and Saito, 1988:

X¢(G) < max{gAs(G) + §,wr(G)}
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the main result

C., and Hao, 2022+:
if X7(G) > A¢(G)+ 2, then x7(G) = wr(G).

Consequences:
» X%(G) has three possibilities; Ar(G), Ar(G) + 1, and wr(G);
» x+(G) has two possibilities: Ar(G) and max{A¢(G) + 1,w(G)};

» X%(G) has two consecutive possible values: max{Af(G),w(G)} and
max{A¢(G) + 1,w(G)}

computing complexity?
wr(G) or max{Ar(G),wr(G)}?



Chen, Zang and Zhao, 2019:
a combinatorial polynomial-time algorithm for finding the fraction
density w*(G).

10



computing f-density

Chen, Zang and Zhao, 2019:

a combinatorial polynomial-time algorithm for finding the fraction
density w*(G).

C. and Yu, 2022+:
if £ is a rational value function, then there is combinatorial
polynomial-time algorithm for finding the fraction f-density wf(G).

10
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fractional f-coloring

Mf’(G):
the set of all f-matchings of G

a fractional f-coloring of G:
a function w : M¢(G) — [0, 1] such that every edge e € E(G) satisfies
2 Mem,(G)eem w(M) = 1.

the fractional f-chromatic x7*(G):

the minimum value 3. 14, () w(M) over all fractional f-colorings

a lower bound of 7 (G):

X (G) = max{A(G),wr(G)}-
X and x7

X¢(6) < x7(6) < x¥(6) + L.

11
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Zhou and Nishizeki, 1999:
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vertex-splitting approach

Zhou and Nishizeki, 1999:
upper bounds for the f-chromatic index of a vertex-weighted graph
(G, f) can be obtained by using the following splitting operation.

Gr — f-splitting of G:
for each vertex v € V/(G), replace v with f(v) copies and attach the
edges that are incident with v in G near equally to the copies of v.

XF(G) < X'(Gr):
A(Gr) = Af(G).
If G is simple, then x}(G) < x'(Gf) +1 < Af(G) + 1.

12



not working for density

an example G:

Let G be a multi-triangle on vertices x, y, z such that

pue(x,y) = pe(x,z) =t and pg(y, z) = 3t for some positive integer t.
f(x)=1and f(y) = f(z) = 2.

Ar(G) = dg(x) = dg(y)/2 = dg(z)/2 = 2t, and

wr(G) = [5t/2] = [2.5t].
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an example G:

Let G be a multi-triangle on vertices x, y, z such that

pue(x,y) = pe(x,z) =t and pg(y, z) = 3t for some positive integer t.
f(x)=1and f(y) = f(z) = 2.

Ar(G) = dg(x) = dg(y)/2 = dg(z)/2 = 2t, and

wr(G) = [5t/2] = [2.5t].

Gf:
Let Gr = tK3 U 2tK; be a disjoint union of a multi-triangle with vertices
X, y1,2z1 and a set of 2t parallel edges between vertices y» and z.

densities:
A(Gr) = 2t and w(Gr) = |E(tK3)|/[3/2] = 3t.

the difference is big:
max{A(Gr),w(Gr)} — max{A¢(G),ws(G)} = 3t — [2.5t] = [0.5¢].

13



Let ¢ be a partial f-coloring of a graph G, and let v be a vertex.
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saturated and unsaturated vertices

Let ¢ be a partial f-coloring of a graph G, and let v be a vertex.

saturated and unsaturated color «:
dy.a(v) = f(v) and d, o(v) < f(v)

¢(v) and B(v)
©(v) the set of saturated colors at v
D(v) the set of unsaturated colors at v

14



Let ¢ be a proper edge-coloring of G, and «, 3 be two distinct colors.

15



” Kempe-chains” in a improper edge-coloring

Let ¢ be a proper edge-coloring of G, and «, 3 be two distinct colors.

Gu,ﬂ — G[E(x.ﬂ]:

a disjoint union of paths and even cycle.
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” Kempe-chains” in a improper edge-coloring

Let ¢ be a proper edge-coloring of G, and «, 3 be two distinct colors.

Gu,ﬂ — G[E(x.ﬂ]:

a disjoint union of paths and even cycle.

@ is not a proper edge-coloring?
Goal:decompose G, g to some desired subgraphs.

15



Let ¢ be an f-coloring of G and «, 3 be two distinct colors.

do(v):
do(v) = f(v) — du(v)

16



alternating trails and alternating walks

Let ¢ be an f-coloring of G and «, 3 be two distinct colors.

do(v):
da(v) = F(v) = da(v)

an («, B)-alternating trail:

a trail whose edges are alternately colored with colors «, .
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alternating trails and alternating walks

Let ¢ be an f-coloring of G and «, 3 be two distinct colors.

(v):
(v) = f(v) — da(v)

an («, B)-alternating trail:

da
do

a trail whose edges are alternately colored with colors «, .

a nontrivial aS-alternating walk W = (vg, e1,v1,...,Vp_1, €, Vp):

(1) p(e1) = B

(2) du(vo) > 1if vo # vp; da(vo) > 2 if W is an odd circuit; and
do(vo) > 1 < dg(w) if W is an even circuit;

(3) ds(vp) > 1if vo # v, and p(e,) = av and dy(vp) > 1 if vo # v, and
p is odd.

16



a nontrivial («a, 3)-walk:

either a nontrivial a8-walk or a nontrivial Sa-walk
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a nontrivial («a, 3)-walk:

either a nontrivial a8-walk or a nontrivial Sa-walk

trivial (o, 8)-walk:

an even circuit yet specified as a nontrivial («, 5)-walk.
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a nontrivial («a, 3)-walk:

either a nontrivial a8-walk or a nontrivial Sa-walk

trivial (o, 8)-walk:

an even circuit yet specified as a nontrivial («, 5)-walk.

end(vertices):

trivial (e, 8)-walk — even circuit — does not have ends (endvertices)

17



an («, B)-alternating trail system ((«, 3)-ATS) W:
a family of edge-disjoint («, /3)-trails
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an («, B)-alternating trail system ((«, 3)-ATS) W:
a family of edge-disjoint («, /3)-trails

an («, B)-alternating walk system ((«, 3)-AW) W:
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(a, 5)-system

an («, f)-alternating trail system ((«, 3)-ATS) W:
a family of edge-disjoint (v, B)-trails

an (a, B)-alternating walk system ((a, 5)-AW) W:

» all trails in W are (o, 3)-walks,
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(a, 5)-system

an («, f)-alternating trail system ((«, 3)-ATS) W:
a family of edge-disjoint (v, B)-trails
an («, f)-alternating walk system ((«, 5)-AW) W:

» all trails in W are (o, 3)-walks,

> at each vertex v € V/(G), the family W contains at most dg(v)
edges colored « that end at v
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(a, 5)-system

an («, f)-alternating trail system ((«, 3)-ATS) W:
a family of edge-disjoint (v, B)-trails

an («, f)-alternating walk system ((«, 5)-AW) W:

» all trails in W are (o, 3)-walks,

> at each vertex v € V/(G), the family W contains at most dg(v)
edges colored « that end at v

> at each vertex v € V/(G), the family W contains d,(v) edges
colored 3 that ends at v.

18



an Alternating Route system (ARS) W:
an (a, $)-AWS such that
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an Alternating Route system (ARS) W:
an (a, $)-AWS such that

> at each vertex v, the family W contains at most ds(v) — da(v)
edges colored « that end at v
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an Alternating Route system (ARS) W:
an (a, $)-AWS such that

> at each vertex v, the family W contains at most ds(v) — da(v)
edges colored « that end at v

> at each vertex v, the family W contains at most d,(v) — ds(v)
edges colored [ that ends at v.

19



Let F C E(G), and let F, W be families of edge-disjoint subgraphs of G.

W covers F:
every edge f € F is in a subgraph in W.
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W covers F:
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Let ¢ be an f-coloring of a weighted graph (G, f). For every
(v, B)-ATS F, there is an (o, )-ARS that covers F.
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covering system

Let F C E(G), and let F,W be families of edge-disjoint subgraphs of G.

W covers F:

every edge f € F is in a subgraph in W.

W covers F:
for H € F, thereisa W € W such that H C W.

Lemma

Let ¢ be an f-coloring of a weighted graph (G, f). For every
(v, B)-ATS F, there is an (o, )-ARS that covers F.

Corollary

For any edge set F C E, g(G), there exists an («, 3)-ARS covering F.
Consequently, for every a- or 3-edge there is an («, 3)-walk containing
it.

20



covering with preserved properties

Definition

Let F be an (o, B)-ATS and E9 C E(F) be a set of end-edges of F. A
vertex v is (F, E9)-attainable if F contains at most dz(v) edges
colored o in E9 that end at v and at most d,(v) edges colored 3 in E¢
that end at v. An (a, 3)-ATS W strongly covers (F, D?) if it covers F
and at any (F, E9)-attainable vertex v, every edge in E? remains an
end-edge in W.
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covering with preserved properties

Definition

Let F be an (o, B)-ATS and E9 C E(F) be a set of end-edges of F. A
vertex v is (F, E9)-attainable if F contains at most ds(v) edges
colored o in E9 that end at v and at most d,(v) edges colored 3 in E¢
that end at v. An (a, 3)-ATS W strongly covers (F, D?) if it covers F
and at any (F, E9)-attainable vertex v, every edge in E? remains an
end-edge in W.

Lemma

For any (a, 3)-ATS F and end-edge set EY C E(F), there is an
(o, B)-AWS W that strongly covers (F, E?).

21



normal, closed, and Tashkinov
tree




Let ¢ be a partial f-coloring of G and U C V(G)
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Normal, closed, and strongly closed

Let ¢ be a partial f-coloring of G and U C V(G)

U normal:

|da(U)] =X ey dalu) < 1 for every color o
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Normal, closed, and strongly closed

Let ¢ be a partial f-coloring of G and U C V(G)

U normal:
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U closed:
No unsaturated color of U appears on the boundary of U
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Normal, closed, and strongly closed

Let ¢ be a partial f-coloring of G and U C V(G)
U normal:

|da(U)] =X ey dalu) < 1 for every color o

U closed:
No unsaturated color of U appears on the boundary of U

U strongly closed:
Colors appearing on the boundary are distinct.

22



Let (G, f) be a weighted graph and e € E(G) such that (x?(G) =k +1
and x7(G —e) =k, and k > A¢(G) + 1.

23



goal

Let (G, f) be a weighted graph and e € E(G) such that (x{(G) = k+1
and x7(G —e) =k, and k > A¢(G) + 1.
Goal:

Find a coloring ¢ € CK(G — e) and a vertex set U C V/(G) such that
e € E[U] and U is both normal and strongly closed.
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Tashkinov tree:

all Tashkinov trees are normal.
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Tashkinov tree and extended Tashkinov tree

Tashkinov tree:

all Tashkinov trees are normal.

extended Tashkinov tree:
There is an extension of Tashkinov tree which is both normal and
strongly closed.
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