Proof of the Goldberg-Seymour Conjecture – III: a preliminary report

11th Cargèse Workshop on Combinatorial Optimization

Guantao Chen

September 22, 2022

Georgia State University, Atlanta, US Supported in part by NSF grant DMS-1855716 and DMS-2154331

a few post proof thoughts

improper colorings

related results

normal, closed, and Tashkinov tree

a few post proof thoughts

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

Let φ be an k-edge-coloring of G - e and T_1 be a maximal Tashkinov tree w.r.t. e and φ

V(G) is normal, which gives three possibilities

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

Let φ be an k-edge-coloring of G - e and T_1 be a maximal Tashkinov tree w.r.t. e and φ

V(G) is normal, which gives three possibilities
V(T₁) = V(G)

2

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

Let φ be an k-edge-coloring of G - e and T_1 be a maximal Tashkinov tree w.r.t. e and φ

V(G) is normal, which gives three possibilities

$$\blacktriangleright V(T_1) = V(G)$$

 \triangleright T_1 is strongly closed

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

- V(G) is normal, which gives three possibilities
- \blacktriangleright $V(T_1) = V(G)$
- \triangleright T_1 is strongly closed
- only SE-extensions are needed

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

- V(G) is normal, which gives three possibilities
- \blacktriangleright $V(T_1) = V(G)$
- \triangleright T_1 is strongly closed
- only SE-extensions are needed
- Is there a simpler and much shorter proof?

the theorem:

If G is a k-critical graph with $k \ge \Delta(G) + 1$, then for any edge $e \in E(G)$, graph G - e is a disjoint union of k near-perfect matchings.

what does this mean?

- V(G) is normal, which gives three possibilities
- \blacktriangleright $V(T_1) = V(G)$
- \triangleright T_1 is strongly closed
- only SE-extensions are needed
- Is there a simpler and much shorter proof?
- Is there a polynomial-time coloring algorithm?

improper colorings

weighted graph (G, f):

a (multi)graph G and a vertex-function $f : V(G) \rightarrow \mathbb{N} \setminus \{0\}$

```
weighted graph (G, f):
```

a (multi)graph G and a vertex-function $f : V(G) \rightarrow \mathbb{N} \setminus \{0\}$

f-matching *M*:

```
an edge set M \subseteq E(G) such that d_M(v) \leq f(v) for each vertex v \in V(G)
```

weighted graph (G, f):

a (multi)graph G and a vertex-function f : $V(G) \rightarrow \mathbb{N} \setminus \{0\}$

f-matching *M*:

```
an edge set M \subseteq E(G) such that d_M(v) \leq f(v) for each vertex v \in V(G)
```

f-coloring:

an edge-coloring such that each color class is an *f*-matching of *G*. i.e., an improper (edge-)coloring φ such that $d_{\varphi,\alpha}(v) \leq f(v)$ for each vertex $v \in V(G)$ and each color α .

weighted graph (G, f):

a (multi)graph G and a vertex-function f : $V(G) \rightarrow \mathbb{N} \setminus \{0\}$

f-matching *M*:

an edge set $M \subseteq E(G)$ such that $d_M(v) \leq f(v)$ for each vertex $v \in V(G)$

f-coloring:

an edge-coloring such that each color class is an *f*-matching of *G*. i.e., an improper (edge-)coloring φ such that $d_{\varphi,\alpha}(v) \leq f(v)$ for each vertex $v \in V(G)$ and each color α .

f-chromatic index, $\chi'_f(G)$:

the least integer $k \ge 0$ such that there is an *f*-coloring using k colors.

weighted graph (G, f):

a (multi)graph G and a vertex-function f : $V(G) \rightarrow \mathbb{N} \setminus \{0\}$

f-matching *M*:

an edge set $M \subseteq E(G)$ such that $d_M(v) \leq f(v)$ for each vertex $v \in V(G)$

f-coloring:

an edge-coloring such that each color class is an *f*-matching of *G*. i.e., an improper (edge-)coloring φ such that $d_{\varphi,\alpha}(v) \leq f(v)$ for each vertex $v \in V(G)$ and each color α .

f-chromatic index, $\chi'_f(G)$:

the least integer $k \ge 0$ such that there is an *f*-coloring using k colors.

 $f(v) \equiv 1$: a traditional (proper) edge-coloring of G.

applications

The *f*-coloring has broader applications than the ordinary edge coloring:

for example, the file transfer problem in a computer network. In the model a vertex of a graph G represents a computer, and an edge does a file which one wish to transfer between the two computers corresponding to its ends. The integer f(v) is the number of communication ports available at a computer v. The edges colored with the same color represent files that can be transferred in the network simultaneously. Thus an f-coloring of G using minimum number of colors corresponds to the scheduling of the transfers with the minimum fishing time.

applications

The *f*-coloring has broader applications than the ordinary edge coloring:

for example, the file transfer problem in a computer network. In the model a vertex of a graph G represents a computer, and an edge does a file which one wish to transfer between the two computers corresponding to its ends. The integer f(v) is the number of communication ports available at a computer v. The edges colored with the same color represent files that can be transferred in the network simultaneously. Thus an f-coloring of G using minimum number of colors corresponds to the scheduling of the transfers with the minimum fishing time.

one more example:

How wavelet assignment problems in so-called multi-fiber WDM networks can be modeled by means of the f color problem is explained in Koster.

$\mathcal{C}^k_f(G)$: the set of all *f*-coloring of *G* with color set $[k] = \{1, \ldots, k\}$

$C_{f}^{k}(G)$: the set of all *f*-coloring of *G* with color set $[k] = \{1, \dots, k\}$

maximum *f*-degree:

$$\Delta_f^*(G) = \max_{v \in V(G)} \frac{d_G(v)}{f(v)} \text{ and } \Delta_f(G) = \lceil \Delta_f^*(G) \rceil.$$

$C_f^k(G)$: the set of all *f*-coloring of *G* with color set $[k] = \{1, \dots, k\}$

maximum *f*-degree:

$$\Delta_f^*(G) = \max_{v \in V(G)} \frac{d_G(v)}{f(v)} \text{ and } \Delta_f(G) = \lceil \Delta_f^*(G) \rceil$$

a lower bound: $\chi'_f(G) \ge \Delta_f(G).$

Hakimi and Kariv, 1986:

if G is a bipartite graph then $\chi'_f(G) = \Delta_f(G)$.

Hakimi and Kariv, 1986:

if G is a bipartite graph then $\chi'_f(G) = \Delta_f(G)$.

Hakimi and Kariv, 1986: $\chi'_f(G) \le \max_{u,v \in V(G)} \left\lceil \frac{d_G(u) + \mu_G(u,v)}{f(u)} \right\rceil$ (a Vizing type theorem)

Hakimi and Kariv, 1986:

if G is a bipartite graph then $\chi'_f(G) = \Delta_f(G)$.

Hakimi and Kariv, 1986:

$$\chi'_f(G) \le \max_{u,v \in V(G)} \left\lceil \frac{d_G(u) + \mu_G(u,v)}{f(u)} \right\rceil$$
 (a Vizing type theorem)

Hakimi and Kariv, 1986:

If f(v) is even for every vertex $v \in V(G)$, then $\chi'_f(G) = \Delta_f(G)$.

f(H): $f(H) = \sum_{v \in V(H)} f(v)$

f(H): $f(H) = \sum_{v \in V(H)} f(v)$

fractional *f*-density $\omega_f^*(G)$:

$$\omega_f^*(G) = \max_{H \subseteq G, |H| \ge 2} \frac{|E(H)|}{\lfloor f(H)/2 \rfloor}$$

if $|G| \ge 2$ and $\omega_f^*(G) = 0$ otherwise.

f(H): $f(H) = \sum_{v \in V(H)} f(v)$

fractional *f*-density $\omega_f^*(G)$:

$$\omega_f^*(G) = \max_{H \subseteq G, |H| \ge 2} \frac{|E(H)|}{\lfloor f(H)/2 \rfloor}$$

if $|G| \ge 2$ and $\omega_f^*(G) = 0$ otherwise.

density $\omega_f(G)$: $\omega_f(G) = \lceil \omega_f^*(G) \rceil$.

f(H): $f(H) = \sum_{v \in V(H)} f(v)$

fractional *f*-density $\omega_f^*(G)$:

$$\omega_f^*(G) = \max_{H \subseteq G, |H| \ge 2} \frac{|E(H)|}{\lfloor f(H)/2 \rfloor}$$

if $|G| \ge 2$ and $\omega_f^*(G) = 0$ otherwise.

density $\omega_f(G)$: $\omega_f(G) = \lceil \omega_f^*(G) \rceil$.

another lower bound

 $\chi'_f(G) \ge \omega_f(G)$, and so $\chi'_f(G) \ge \max{\Delta_f(G), \omega(G)}.$ the Goldberg-Seymour Conjecture: $\chi'(G) \le \max{\Delta(G) + 1, \omega(G)}$ the Goldberg-Seymour Conjecture: $\chi'(G) \le \max{\Delta(G) + 1, \omega(G)}$

Nakano, Nishizeki, and Saito, 1988: $\chi'_f(G) \leq \max{\{\Delta_f(G) + 1, \omega_f(G)\}}.$ the Goldberg-Seymour conjecture for *f*-coloring the Goldberg-Seymour Conjecture: $\chi'(G) \le \max{\Delta(G) + 1, \omega(G)}$

Nakano, Nishizeki, and Saito, 1988: $\chi'_f(G) \leq \max{\{\Delta_f(G) + 1, \omega_f(G)\}}.$ the Goldberg-Seymour conjecture for *f*-coloring

Nakano, Nishizeki, and Saito, 1988: $\chi'_f(G) \le \max\{\frac{9}{8}\Delta_f(G) + \frac{6}{8}, \omega_f(G)\}$

Consequences:

Consequences:

• $\chi'_f(G)$ has three possibilities; $\Delta_f(G)$, $\Delta_f(G) + 1$, and $\omega_f(G)$;

Consequences:

- $\chi'_f(G)$ has three possibilities; $\Delta_f(G)$, $\Delta_f(G) + 1$, and $\omega_f(G)$;
- $\chi'_f(G)$ has two possibilities: $\Delta_f(G)$ and max{ $\Delta_f(G) + 1, \omega(G)$ };
C., and Hao, 2022+: if $\chi'_f(G) \ge \Delta_f(G) + 2$, then $\chi'_f(G) = \omega_f(G)$.

Consequences:

• $\chi'_f(G)$ has three possibilities; $\Delta_f(G)$, $\Delta_f(G) + 1$, and $\omega_f(G)$;

• $\chi'_f(G)$ has two possibilities: $\Delta_f(G)$ and max $\{\Delta_f(G) + 1, \omega(G)\}$;

χ'_f(G) has two consecutive possible values: max{Δ_f(G), ω(G)} and
 max{Δ_f(G) + 1, ω(G)}

C., and Hao, 2022+: if $\chi'_f(G) \ge \Delta_f(G) + 2$, then $\chi'_f(G) = \omega_f(G)$.

Consequences:

- $\chi'_f(G)$ has three possibilities; $\Delta_f(G)$, $\Delta_f(G) + 1$, and $\omega_f(G)$;
- $\chi'_f(G)$ has two possibilities: $\Delta_f(G)$ and max{ $\Delta_f(G) + 1, \omega(G)$ };
- χ'_f(G) has two consecutive possible values: max{Δ_f(G), ω(G)} and
 max{Δ_f(G) + 1, ω(G)}

computing complexity? $\omega_f(G)$ or max{ $\Delta_f(G), \omega_f(G)$ }?

Chen, Zang and Zhao, 2019:

a combinatorial polynomial-time algorithm for finding the fraction density $\omega^*(G)$.

Chen, Zang and Zhao, 2019:

a combinatorial polynomial-time algorithm for finding the fraction density $\omega^*(G)$.

C. and Yu, 2022+:

if f is a rational value function, then there is combinatorial polynomial-time algorithm for finding the fraction f-density $\omega_f^*(G)$.

 $\mathcal{M}_f(G)$: the set of all *f*-matchings of *G*

 $\mathcal{M}_f(G)$: the set of all *f*-matchings of *G*

a fractional *f*-coloring of *G*:

a function $\omega : \mathcal{M}_f(G) \to [0,1]$ such that every edge $e \in E(G)$ satisfies $\sum_{M \in \mathcal{M}_f(G): e \in M} \omega(M) = 1.$

 $\mathcal{M}_f(G)$: the set of all *f*-matchings of *G*

a fractional *f*-coloring of *G*: a function $\omega : \mathcal{M}_f(G) \to [0, 1]$ such that every edge $e \in E(G)$ satisfies $\sum_{M \in \mathcal{M}_f(G): e \in M} \omega(M) = 1.$

the fractional *f*-chromatic $\chi_f^{\prime*}(G)$: the minimum value $\sum_{M \in \mathcal{M}_f(G)} \omega(M)$ over all fractional *f*-colorings

 $\mathcal{M}_f(G)$: the set of all *f*-matchings of *G*

a fractional *f*-coloring of *G*: a function $\omega : \mathcal{M}_f(G) \to [0, 1]$ such that every edge $e \in E(G)$ satisfies $\sum_{M \in \mathcal{M}_f(G): e \in M} \omega(M) = 1.$

the fractional *f*-chromatic $\chi_f^{\prime*}(G)$: the minimum value $\sum_{M \in \mathcal{M}_f(G)} \omega(M)$ over all fractional *f*-colorings

a lower bound of $\chi_f^{\prime*}(G)$: $\chi_f^{\prime*}(G) \ge \max\{\Delta_f^*(G), \omega_f^*(G)\}.$

 $\mathcal{M}_f(G)$: the set of all *f*-matchings of *G*

a fractional f-coloring of G: a function $\omega : \mathcal{M}_f(G) \to [0,1]$ such that every edge $e \in E(G)$ satisfies $\sum_{M \in \mathcal{M}_f(G): e \in M} \omega(M) = 1.$

the fractional *f*-chromatic $\chi_f^{\prime*}(G)$: the minimum value $\sum_{M \in \mathcal{M}_f(G)} \omega(M)$ over all fractional *f*-colorings

a lower bound of $\chi_f^{\prime*}(G)$: $\chi_f^{\prime*}(G) \ge \max\{\Delta_f^*(G), \omega_f^*(G)\}.$

 χ'_f and χ'^*_f $\chi'_f(G) \le \chi'_f(G) \le \chi'^*_f(G) + 1.$

related results

Zhou and Nishizeki, 1999:

upper bounds for the f-chromatic index of a vertex-weighted graph (G, f) can be obtained by using the following splitting operation.

Zhou and Nishizeki, 1999:

upper bounds for the *f*-chromatic index of a vertex-weighted graph (G, f) can be obtained by using the following splitting operation.

$G_f - f$ -splitting of G:

for each vertex $v \in V(G)$, replace v with f(v) copies and attach the edges that are incident with v in G near equally to the copies of v.

Zhou and Nishizeki, 1999:

upper bounds for the *f*-chromatic index of a vertex-weighted graph (G, f) can be obtained by using the following splitting operation.

$G_f - f$ -splitting of G:

for each vertex $v \in V(G)$, replace v with f(v) copies and attach the edges that are incident with v in G near equally to the copies of v.

$$\begin{split} &\chi'_f(G) \leq \chi'(G_f):\\ &\Delta(G_f) = \Delta_f(G).\\ &\text{If } G \text{ is simple, then } \chi'_f(G) \leq \chi'(G_f) + 1 \leq \Delta_f(G) + 1. \end{split}$$

an example G:

Let G be a multi-triangle on vertices x, y, z such that $\mu_G(x, y) = \mu_G(x, z) = t$ and $\mu_G(y, z) = 3t$ for some positive integer t. f(x) = 1 and f(y) = f(z) = 2. $\Delta_f(G) = d_G(x) = d_G(y)/2 = d_G(z)/2 = 2t$, and $\omega_f(G) = \lceil 5t/2 \rceil = \lceil 2.5t \rceil$.

an example G:

Let G be a multi-triangle on vertices x, y, z such that $\mu_G(x, y) = \mu_G(x, z) = t$ and $\mu_G(y, z) = 3t$ for some positive integer t. f(x) = 1 and f(y) = f(z) = 2. $\Delta_f(G) = d_G(x) = d_G(y)/2 = d_G(z)/2 = 2t$, and $\omega_f(G) = \lceil 5t/2 \rceil = \lceil 2.5t \rceil$.

G_f :

Let $G_f = tK_3 \cup 2tK_2$ be a disjoint union of a multi-triangle with vertices x, y_1, z_1 and a set of 2t parallel edges between vertices y_2 and z_2 .

an example G:

Let G be a multi-triangle on vertices x, y, z such that $\mu_G(x, y) = \mu_G(x, z) = t$ and $\mu_G(y, z) = 3t$ for some positive integer t. f(x) = 1 and f(y) = f(z) = 2. $\Delta_f(G) = d_G(x) = d_G(y)/2 = d_G(z)/2 = 2t$, and $\omega_f(G) = \lceil 5t/2 \rceil = \lceil 2.5t \rceil$.

G_f :

Let $G_f = tK_3 \cup 2tK_2$ be a disjoint union of a multi-triangle with vertices x, y_1, z_1 and a set of 2t parallel edges between vertices y_2 and z_2 .

densities:

$$\Delta(G_f) = 2t$$
 and $\omega(G_f) = |E(tK_3)|/\lfloor 3/2 \rfloor = 3t$.

an example G:

Let G be a multi-triangle on vertices x, y, z such that $\mu_G(x, y) = \mu_G(x, z) = t$ and $\mu_G(y, z) = 3t$ for some positive integer t. f(x) = 1 and f(y) = f(z) = 2. $\Delta_f(G) = d_G(x) = d_G(y)/2 = d_G(z)/2 = 2t$, and $\omega_f(G) = \lceil 5t/2 \rceil = \lceil 2.5t \rceil$.

G_f :

Let $G_f = tK_3 \cup 2tK_2$ be a disjoint union of a multi-triangle with vertices x, y_1, z_1 and a set of 2t parallel edges between vertices y_2 and z_2 .

densities:

$$\Delta(G_f) = 2t$$
 and $\omega(G_f) = |E(tK_3)|/\lfloor 3/2 \rfloor = 3t$.

the difference is big:

 $\max\{\Delta(G_f), \omega(G_f)\} - \max\{\Delta_f(G), \omega_f(G)\} = 3t - \lceil 2.5t \rceil = \lfloor 0.5t \rfloor.$

Let φ be a partial *f*-coloring of a graph *G*, and let *v* be a vertex.

Let φ be a partial *f*-coloring of a graph *G*, and let *v* be a vertex.

saturated and unsaturated color α : $d_{\varphi,\alpha}(v) = f(v)$ and $d_{\varphi,\alpha}(v) < f(v)$ Let φ be a partial *f*-coloring of a graph *G*, and let *v* be a vertex.

saturated and unsaturated color α : $d_{\varphi,\alpha}(v) = f(v)$ and $d_{\varphi,\alpha}(v) < f(v)$

 $\varphi(v)$ and $\overline{\varphi}(v)$ $\varphi(v)$ the set of saturated colors at v $\overline{\varphi}(v)$ the set of unsaturated colors at v Let φ be a proper edge-coloring of G, and α, β be two distinct colors.

Let φ be a proper edge-coloring of G, and α,β be two distinct colors.

 $G_{\alpha,\beta} = G[E_{\alpha,\beta}]$: a disjoint union of paths and even cycle. Let φ be a proper edge-coloring of G, and α,β be two distinct colors.

 $G_{\alpha,\beta} = G[E_{\alpha,\beta}]$: a disjoint union of paths and even cycle.

 φ is not a proper edge-coloring? Goal:decompose $G_{\alpha,\beta}$ to some desired subgraphs.

alternating trails and alternating walks

Let φ be an *f*-coloring of *G* and α, β be two distinct colors.

 $\overline{d}_{\alpha}(v)$: $\overline{d}_{\alpha}(v) = f(v) - d_{\alpha}(v)$

alternating trails and alternating walks

Let φ be an *f*-coloring of *G* and α, β be two distinct colors.

 $\overline{d}_{lpha}(\mathbf{v})$: $\overline{d}_{lpha}(\mathbf{v}) = f(\mathbf{v}) - d_{lpha}(\mathbf{v})$

an (α, β) -alternating trail:

a trail whose edges are alternately colored with colors α, β .

alternating trails and alternating walks

Let φ be an *f*-coloring of *G* and α, β be two distinct colors.

 $\overline{d}_{lpha}(\mathbf{v})$: $\overline{d}_{lpha}(\mathbf{v}) = f(\mathbf{v}) - d_{lpha}(\mathbf{v})$

an (α, β) -alternating trail:

a trail whose edges are alternately colored with colors α, β .

a nontrivial $\alpha\beta$ -alternating walk $W = (v_0, e_1, v_1, \dots, v_{p-1}, e_p, v_p)$:

(1)
$$\varphi(e_1) = \beta;$$

- (2) $\overline{d}_{\alpha}(v_0) \ge 1$ if $v_0 \ne v_p$; $\overline{d}_{\alpha}(v_0) \ge 2$ if W is an odd circuit; and $\overline{d}_{\alpha}(v_0) \ge 1 \le \overline{d}_{\beta}(v_0)$ if W is an even circuit;
- (3) $\overline{d}_{\beta}(v_p) \ge 1$ if $v_0 \ne v_p$ and $\varphi(e_p) = \alpha$ and $\overline{d}_{\alpha}(v_p) \ge 1$ if $v_0 \ne v_p$ and p is odd.

a nontrivial (α, β) -walk: either a nontrivial $\alpha\beta$ -walk or a nontrivial $\beta\alpha$ -walk

a nontrivial (α, β) -walk:

either a nontrivial $\alpha\beta\text{-walk}$ or a nontrivial $\beta\alpha\text{-walk}$

trivial (α, β) -walk:

an even circuit yet specified as a nontrivial (α, β) -walk.

a nontrivial (α, β) -walk:

either a nontrivial $\alpha\beta$ -walk or a nontrivial $\beta\alpha$ -walk

trivial (α, β) -walk:

an even circuit yet specified as a nontrivial (α, β) -walk.

end(vertices):

trivial (α, β) -walk – even circuit – does not have ends (endvertices)

• all trails in
$${\mathcal W}$$
 are $(lpha,eta)$ -walks,

- ▶ all trails in W are (α, β) -walks,
- at each vertex v ∈ V(G), the family W contains at most d
 _β(v) edges colored α that end at v

- ▶ all trails in W are (α, β) -walks,
- at each vertex v ∈ V(G), the family W contains at most d
 _β(v) edges colored α that end at v
- at each vertex v ∈ V(G), the family W contains d_α(v) edges colored β that ends at v.

an Alternating Route system (ARS) \mathcal{W} : an (α, β) -AWS such that

an Alternating Route system (ARS) \mathcal{W} :

an (α, β)-AWS such that

A at each vertex v, the family W contains at most d
_β(v) − d
_α(v) edges colored α that end at v
an Alternating Route system (ARS) \mathcal{W} :

an (α, β) -AWS such that

At each vertex v, the family W contains at most d
_β(v) − d
_α(v) edges colored α that end at v

• at each vertex v, the family W contains at most $\overline{d}_{\alpha}(v) - \overline{d}_{\beta}(v)$ edges colored β that ends at v.

Let $F \subseteq E(G)$, and let \mathcal{F}, \mathcal{W} be families of edge-disjoint subgraphs of G.

 \mathcal{W} covers F: every edge $f \in F$ is in a subgraph in \mathcal{W} .

Let $F \subseteq E(G)$, and let \mathcal{F}, \mathcal{W} be families of edge-disjoint subgraphs of G.

 \mathcal{W} covers F: every edge $f \in F$ is in a subgraph in \mathcal{W} .

 \mathcal{W} covers \mathcal{F} : for $H \in \mathcal{F}$, there is a $W \in \mathcal{W}$ such that $H \subseteq W$.

Let $F \subseteq E(G)$, and let \mathcal{F}, \mathcal{W} be families of edge-disjoint subgraphs of G.

 \mathcal{W} covers F: every edge $f \in F$ is in a subgraph in \mathcal{W} .

 \mathcal{W} covers \mathcal{F} : for $H \in \mathcal{F}$, there is a $W \in \mathcal{W}$ such that $H \subseteq W$.

Lemma

Let φ be an f-coloring of a weighted graph (G, f). For every (α, β) -ATS \mathcal{F} , there is an (α, β) -ARS that covers \mathcal{F} .

Let $F \subseteq E(G)$, and let \mathcal{F}, \mathcal{W} be families of edge-disjoint subgraphs of G.

 \mathcal{W} covers F: every edge $f \in F$ is in a subgraph in \mathcal{W} .

 \mathcal{W} covers \mathcal{F} : for $H \in \mathcal{F}$, there is a $W \in \mathcal{W}$ such that $H \subseteq W$.

Lemma

Let φ be an f-coloring of a weighted graph (G, f). For every (α, β) -ATS \mathcal{F} , there is an (α, β) -ARS that covers \mathcal{F} .

Corollary

For any edge set $F \subseteq E_{\alpha,\beta}(G)$, there exists an (α,β) -ARS covering F. Consequently, for every α - or β -edge there is an (α,β) -walk containing it.

Definition

Let \mathcal{F} be an (α, β) -ATS and $E^d \subseteq E(\mathcal{F})$ be a set of end-edges of \mathcal{F} . A vertex v is (\mathcal{F}, E^d) -attainable if \mathcal{F} contains at most $\overline{d}_{\beta}(v)$ edges colored α in E^d that end at v and at most $\overline{d}_{\alpha}(v)$ edges colored β in E^d that end at v. An (α, β) -ATS \mathcal{W} strongly covers (\mathcal{F}, D^d) if it covers \mathcal{F} and at any (\mathcal{F}, E^d) -attainable vertex v, every edge in E^d remains an end-edge in \mathcal{W} .

Definition

Let \mathcal{F} be an (α, β) -ATS and $E^d \subseteq E(\mathcal{F})$ be a set of end-edges of \mathcal{F} . A vertex v is (\mathcal{F}, E^d) -attainable if \mathcal{F} contains at most $\overline{d}_{\beta}(v)$ edges colored α in E^d that end at v and at most $\overline{d}_{\alpha}(v)$ edges colored β in E^d that end at v. An (α, β) -ATS \mathcal{W} strongly covers (\mathcal{F}, D^d) if it covers \mathcal{F} and at any (\mathcal{F}, E^d) -attainable vertex v, every edge in E^d remains an end-edge in \mathcal{W} .

Lemma

For any (α, β) -ATS \mathcal{F} and end-edge set $E^d \subseteq E(\mathcal{F})$, there is an (α, β) -AWS \mathcal{W} that strongly covers (\mathcal{F}, E^d) .

normal, closed, and Tashkinov tree

U normal: $|\overline{d}_{\alpha}(U)| = \sum_{u \in U} \overline{d}_{\alpha}(u) \leq 1$ for every color α

U normal: $|\overline{d}_{\alpha}(U)| = \sum_{u \in U} \overline{d}_{\alpha}(u) \leq 1$ for every color α

U closed:

No unsaturated color of U appears on the boundary of U

U normal: $|\overline{d}_{\alpha}(U)| = \sum_{u \in U} \overline{d}_{\alpha}(u) \leq 1$ for every color α

U closed:

No unsaturated color of U appears on the boundary of U

U strongly closed:

Colors appearing on the boundary are distinct.

Let (G, f) be a weighted graph and $e \in E(G)$ such that $(\chi'_f(G) = k + 1)$ and $\chi'_f(G - e) = k$, and $k \ge \Delta_f(G) + 1$. Let (G, f) be a weighted graph and $e \in E(G)$ such that $(\chi'_f(G) = k + 1)$ and $\chi'_f(G - e) = k$, and $k \ge \Delta_f(G) + 1$.

Goal:

Find a coloring $\varphi \in C_f^k(G - e)$ and a vertex set $U \subseteq V(G)$ such that $e \in E[U]$ and U is both normal and strongly closed.

Tashkinov tree:

all Tashkinov trees are normal.

Tashkinov tree:

all Tashkinov trees are normal.

extended Tashkinov tree:

There is an extension of Tashkinov tree which is both normal and strongly closed.

