OPTIMIZATION WITH PREDICTIONS AND/OR ONLINE

CHRISTIAN COESTER (OXFORD)

Traditional Algorithms

Worst-case guarantees Pessimistic?

Machine learned predictions

Often very powerful No guarantee

Traditional Algorithms

Worst-case guarantees Pessimistic? **Machine learned predictions**

Often very powerful No guarantee

Real life \neq worst case, often predictable (e.g., solve similar instances repeatedly) **Traditional Algorithms**

Worst-case guarantees Pessimistic? **Machine learned predictions**

Often very powerful No guarantee

Real life \neq worst case, often predictable (e.g., solve similar instances repeatedly)

Algorithms with predictions

Goal: Good predictions \implies much better performance Bad predictions \implies same worst-case guarantee

2	5	7	10	16	23	28	36	37	42	47	58	60	67	73	80	83

Does 67 appear in array?

Binary search: Time O(log n)

- Binary search: Time $O(\log n)$
- Given prediction \hat{p} of position p

- Binary search: Time $O(\log n)$
- Siven prediction \hat{p} of position p

- Binary search: Time $O(\log n)$
- Siven prediction \hat{p} of position p

- Binary search: Time $O(\log n)$
- Siven prediction \hat{p} of position p

Does 67 appear in array?

- Binary search: Time O(log n)
- Given prediction \hat{p} of position p

Fine $O(\log \eta)$, where $\eta = |\hat{p} - p|$

Algorithms with Predictions (aka Learning-Augmented Algorithms)

Growing rapidly in last 5 years

- Caching
- Scheduling/Load Balancing
- Rent or buy problems
- Metrical Task Systems
- Matching
- Data Structures
- •••

Improve competitive, approx. ratio, running time, space, ...

Sorting with Predictions

JOINT WORK WITH XINGJIAN BAI (OXFORD)

Sorting with Predictions [Bai,Coester 23]

Task: Sort $a_1, a_2, ..., a_n$ wrt. <

Setting 1: Receive prediction of positions in sorted list Setting 2: Access to quick-and-dirty comparisons

Input: $a_1, a_2, ..., a_n$ prediction $\hat{p}(i)$ of a_i 's position in sorted list

Input: $a_1, a_2, ..., a_n$ prediction $\hat{p}(i)$ of a_i 's position in sorted list

Similar: Adaptive Sorting

We consider element-wise error ---> fine-grained guarantees

Input: $a_1, a_2, ..., a_n$ prediction $\hat{p}(i)$ of a_i 's position in sorted list

Similar: Adaptive Sorting We consider element-wise error ---> fine-grained guarantees

Notation: p(i) = true position of a_i in sorted list $\eta_i = |\hat{p}(i) - p(i)|$

Input: $a_1, a_2, ..., a_n$ prediction $\hat{p}(i)$ of a_i 's position in sorted list

Similar: Adaptive Sorting We consider element-wise error ---> fine-grained guarantees

Notation: p(i) = true position of a_i in sorted list $\eta_i = |\hat{p}(i) - p(i)|$

Theorem: \exists algorithm that sorts in time $O\left(\sum_{i=1}^{n} \log(\eta_i + 2)\right)$

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	82		208	281		364		510			621	711		813		914
	67					398		491			649					894
	90					385					625					

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	82		208	281		364		510			621	711		813		914
	67					398		491			649					894
						385					625					

90

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	82		208	281		364		510			621	711		813		914
	67					398		491			649					894
						385					625					

90

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	82		208	281		364		510			621	711		813		914
						398		491			649					894
						385					625					

67 90

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	82		208	281		364		510			621	711		813		914
						398		491			649					894
						385					625					

67

90

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			208	281		364		510			621	711		813		914
						398		491			649					894
						385					625					

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position
| a_i | 510 | 82 | 208 | 813 | 67 | 491 | 621 | 364 | 914 | 398 | 649 | 281 | 711 | 385 | 90 | 894 | 625 |
|--------------|-----|----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|
| $\hat{p}(i)$ | 9 | 2 | 4 | 15 | 2 | 9 | 12 | 7 | 17 | 7 | 12 | 5 | 13 | 7 | 2 | 17 | 12 |

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
				281		364		510			621	711		813		914
						398		491			649					894
						385					625					

67	82	90	208
----	----	----	-----

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
							364		510			621	711		813		914
							398		491			649					894

385

625

|--|

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
·							364		510			621	711		813		914
							398		491			649					894
												625					

67	82	90	208	281	385
----	----	----	-----	-----	-----

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
·							364		510			621	711		813		914
								-	491			649					894
												625					

67	82	90	208	281	385	398
----	----	----	-----	-----	-----	-----

- **1**. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

- 1. Bucket sort according to \hat{p}
- 2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
							364		510			621	711		813		914
									491			649					894
												625					
	67_	82	90	208	281		385	398									

1. Bucket sort according to \hat{p}

2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

a_i	510	82	208	813	67	491	621	364	914	398	649	281	711	385	90	894	625
$\hat{p}(i)$	9	2	4	15	2	9	12	7	17	7	12	5	13	7	2	17	12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
									510			621	711		813		914
									491			649		- '			894
												625					

67	82	90	208	281	364	385	398
----	----	----	-----	-----	-----	-----	-----

1. Bucket sort according to \hat{p}

2. From left to right: Insert into sorted list Use binary search with predictions to find insert position

$$#comparisons = \sum_{i} \log (|p(i) - p(i-1)| + 1)$$

$$\begin{aligned} \# \text{comparisons} &= \sum_{i} \log \left(\underbrace{|p(i) - p(i-1)| + 1}_{i} \right) \\ &\leq |p(i) - \hat{p}(i)| + \hat{p}(i) - \hat{p}(i-1) + |\hat{p}(i-1) - p(i-1)| \end{aligned}$$

$$\begin{aligned} \#\text{comparisons} &= \sum_{i} \log \left(\underbrace{|p(i) - p(i-1)| + 1}_{i} \right) \\ &\leq \underbrace{|p(i) - \hat{p}(i)|}_{\eta_{i}} + \hat{p}(i) - \hat{p}(i-1) + \underbrace{|\hat{p}(i-1) - p(i-1)|}_{\eta_{i-1}} \end{aligned}$$

$$\begin{aligned} \# \text{comparisons} &= \sum_{i} \log \left(\underbrace{|p(i) - p(i-1)| + 1} \right) \\ &\leq \underbrace{|p(i) - \hat{p}(i)|}_{\eta_{i}} + \hat{p}(i) - \hat{p}(i-1) + \underbrace{|\hat{p}(i-1) - p(i-1)|}_{\eta_{i-1}} \\ &\leq \sum_{i} O(\log \eta_{i}) + \sum_{i} \log \left(\hat{p}(i) - \hat{p}(i-1) + 1 \right) \end{aligned}$$

$$\begin{aligned} \# \text{comparisons} &= \sum_{i} \log \left(|p(i) - p(i-1)| + 1 \right) \\ &\leq |p(i) - \hat{p}(i)| + \hat{p}(i) - \hat{p}(i-1) + |\hat{p}(i-1) - p(i-1)| \\ &\eta_{i} \\ &\leq \sum_{i} O(\log \eta_{i}) + \sum_{i} \log \left(\hat{p}(i) - \hat{p}(i-1) + 1 \right) \\ &\leq \hat{p}(i) - \hat{p}(i-1) \end{aligned}$$

$$# \text{comparisons} = \sum_{i} \log \left(\frac{|p(i) - p(i-1)| + 1}{2} \right) \\ \leq \frac{|p(i) - \hat{p}(i)|}{\eta_{i}} + \hat{p}(i) - \hat{p}(i-1) + \frac{|\hat{p}(i-1) - p(i-1)|}{\eta_{i-1}} \\ \leq \sum_{i} O(\log \eta_{i}) + \sum_{i} \log \left(\hat{p}(i) - \hat{p}(i-1) + 1 \right) \\ \leq \hat{p}(i) - \hat{p}(i-1) \\ \leq \hat{p}(i) - \hat{p}(i-1) \\ \leq O\left(\sum_{i=1}^{n} \log(\eta_{i} + 2) \right) \\ \leq O\left(\sum_{i=1}^{n} \log(\eta_{i} + 2) \right)$$

But shifting subarrays slow

But shifting subarrays slow

Better: Replace array by BBST to get time $O\left(\sum_{i} \log(\eta_i + 2)\right)$

More involved algorithm (see our paper [Bai, Coester 23])

$$\implies O\left(\sum_{i} \log(\tilde{\eta}_{i} + 2)\right) \text{ comparisons, where}$$
$$\tilde{\eta}_{i} := \min\left\{\#\{j: a_{j} < a_{i}, \hat{p}(j) \ge \hat{p}(i)\},\\ \#\{j: a_{j} > a_{i}, \hat{p}(j) \le \hat{p}(i)\}\right\}$$

Sorting with Dirty and Clean Comparisons

Input: $a_1, a_2, ..., a_n$ slow-and-clean comparator < quick-and-dirty comparator $\hat{<}$

Error: $\eta_i := \#\{j: (a_j < a_i) \neq (a_j \stackrel{2}{<} a_i)\}$

Sorting with Dirty and Clean Comparisons

Input: $a_1, a_2, ..., a_n$ slow-and-clean comparator < quick-and-dirty comparator $\hat{<}$

Error:
$$\eta_i := \#\{j: (a_j < a_i) \neq (a_j \stackrel{>}{<} a_i)\}$$

Theorem: Can sort with $O(n \log n)$ dirty comparisons and $O\left(\sum_{i=1}^{n} \log(\eta_i + 2)\right)$ clean comparisons

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via 2 and <

Idea: Build BST wrt. < Guide insertions via 2 and <

Idea: Build BST wrt. < Guide insertions via 2 and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Idea: Build BST wrt. < Guide insertions via $\hat{\langle}$ and <

Sorting countries by population (n=261)

Predictions: ranking x years ago

Classes of consecutive items (n=1,000,000)

Predictions: random position within class

Repeatedly add ± 1 to $\hat{p}(i)$, for *i* random (n=1,000,000)

Fraction r of items damaged (n=100,000)

 $\hat{<}$ random if an item damaged, otherwise correct

Fraction r of items damaged (n=100,000)

 $\hat{<}$ random if both items damaged, otherwise correct

Roadmap

- Sorting with Predictions
- Weighted Paging with Predictions (today + tomorrow)
- Mixing Multiple Predictions (tomorrow or Thursday)
- Shortest Paths without a Map (Thursday)
- Randomized k-Server Conjecture (Thursday)

Learning-Augmented Weighted Paging

JOINT WORK WITH

NIKHIL BANSAL (UNIVERSITY OF MICHIGAN) RAVI KUMAR (GOOGLE) MANISH PUROHIT (GOOGLE) ERIK VEE (GOOGLE)

cache can hold k pages

- cache can hold k pages
- at time t = 1, 2, ...
 - \blacktriangleright page p_t requested

- cache can hold k pages
- at time t = 1, 2, ...
 - \blacktriangleright page p_t requested

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

Request:

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

- cache can hold k pages
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - > pay 1

Request:

On cache miss, evict page whose next request is farthest in future.

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Proof: Let n(s) :=#pages in FIF-cache in pos $\leq s$ in next-request ordering $n^*(s) :=$ ------ OPT-cache ------

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Proof: Let

n(s) :=#pages in FIF-cache in pos $\leq s$ in next-request ordering $n^*(s) :=$ ----- OPT-cache -----

$$\Phi := \max_{s} n^*(s) - n(s)$$

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Proof: Let

n(s) :=#pages in FIF-cache in pos $\leq s$ in next-request ordering $n^*(s) :=$ ----- OPT-cache ------

$$\Phi := \max_{s} n^*(s) - n(s)$$

 $\mathsf{Claim:}\ \Delta\mathsf{cost}_{\mathsf{FIF}}\ + \Delta\Phi \leq \Delta\mathsf{cost}_{\mathsf{OPT}}$

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Proof: Let

n(s) :=#pages in FIF-cache in pos $\leq s$ in next-request ordering $n^*(s) :=$ ----- OPT-cache -----

$$\Phi := \max_{s} n^*(s) - n(s)$$

 $\mathsf{Claim:}\ \Delta\mathsf{cost}_{\mathsf{FIF}}\ + \Delta\Phi \leq \Delta\mathsf{cost}_{\mathsf{OPT}}$

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Online paging

Requests revealed one by one

Algorithm ρ -competitive if $\cos t \le \rho \cdot \operatorname{opt} + \operatorname{const}$

On cache miss, evict page whose next request is farthest in future.

Theorem: FIF is optimal.

Online paging

Requests revealed one by one

Algorithm ρ -competitive if $\cos t \le \rho \cdot \operatorname{opt} + \operatorname{const}$

Competitive ratio of paging: k deterministically [ST85] $\Theta(\log k)$ randomized [FKLMSY91] Learning-Augmented Paging [Lykouris & Vassilvitskii 18]

At time t, page p_t requested and additional input:

 $\tau_t := predicted time when p_t next requested$

Learning-Augmented Paging [Lykouris & Vassilvitskii 18] At time t, page p_t requested and additional input: $\tau_t :=$ predicted time when p_t next requested [LV 18]: $O\left(\min\left\{\sqrt{\frac{\eta}{\mathsf{opt}}},\log k\right\}\right)$ -competitive, where $\eta := \sum_{t} |\tau_t - a_t|$ truth

prediction tru

Learning-Augmented Paging [Lykouris & Vassilvitskii 18] At time t, page p_t requested and additional input: $\tau_t :=$ predicted time when p_t next requested [LV 18]: $O\left(\min\left\{\sqrt{\frac{\eta}{\mathsf{opt}}},\log k\right\}\right)$ -competitive, where $\eta := \sum_{t} |\tau_t - a_t|$ truth prediction

[Rohatgi 20, Wei 20]: Improved dependence on η

Weighted Paging

- cache can hold k pages
- > Page p has weight $w_p > 0$
- at time t = 1, 2, ...
 - > page p_t requested
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache
 - **b** pay W_{p_t}

Weighted Paging

- Stepping stone towards k-server
- Same comp. ratio as paging (k determ., Θ(log k) rand.), but techniques more challenging

Weighted Paging

- Stepping stone towards k-server
- Same comp. ratio as paging (k determ., Θ(log k) rand.), but techniques more challenging

Weighted Paging

- Stepping stone towards k-server
- Same comp. ratio as paging (k determ., Θ(log k) rand.), but techniques more challenging

FIF with weights?

Weighted paging with predictions?

Bad News

 $\Omega(k)$ deterministic and $\Omega(\log k)$ randomized even with accurate predictions of next request times [JPS20,ACEPS20]

Bad News

 $\Omega(k)$ deterministic and $\Omega(\log k)$ randomized even with accurate predictions of next request times [JPS20,ACEPS20]

[JPS20]: Prediction of *entire request sequence* until each page requested again

[ACEPS20]: Prediction of optimal actions

Learning-Augmented Weighted Paging

 $\Omega(l)$ deterministic and $\Omega(\log l)$ randomized with accurate predictions of next request times [JPS20,ACEPS20]

where l =#weight classes

Learning-Augmented Weighted Paging

 $\Omega(l)$ deterministic and $\Omega(\log l)$ randomized with accurate predictions of next request times [JPS20,ACEPS20]

```
where l = #weight classes
```

[Bansal,Coester,Kumar,Purohit,Vee 22]:

Theorem: These bounds are tight.

Recap: Learning-Augmented Weighted Paging

cache can hold k pages

- at time t = 1, 2, ...
 - > page p_t requested
 - > prediction τ_t of next time when p_t requested again
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache for cost w_{p_t}

Parameter: l = #weight classes

Recap: Learning-Augmented Weighted Paging

cache can hold k pages

- at time t = 1, 2, ...
 - > page p_t requested
 - > prediction τ_t of next time when p_t requested again
 - ▶ if $p_t \notin$ cache ("cache miss")
 - evict a page from cache
 - fetch p_t into cache for cost w_{p_t}

Parameter: $l = #weight classes \leq O\left(\log \frac{\max_p w_p}{\min_p w_p}\right)$

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions accurate, there is

l-competitive deterministic algorithm

O(log l)-competitive randomized algorithm

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions unreliable, there is

• $O\left(\min\left\{l+\frac{l\cdot\epsilon}{\mathsf{opt}},k\right\}\right)$ -competitive deterministic algorithm • $O\left(\min\left\{\log l+\frac{l\cdot\epsilon}{\mathsf{opt}},\log k\right\}\right)$ -competitive randomized algorithm

where
$$\epsilon = \sum_{i=1}^{l} w_i \cdot \#$$
surprises in weight class

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions unreliable, there is

• $O\left(\min\left\{l+\frac{l\cdot\epsilon}{opt},k\right\}\right)$ -competitive deterministic algorithm

$$O\left(\min\left\{\log l + \frac{l \cdot \epsilon}{\mathsf{opt}}, \log k\right\}\right) \text{-competitive randomized}$$

algorithm

where
$$\epsilon = \sum_{i=1}^{l} w_i \cdot \#$$
surprises in weight class
 $\leq 2 \sum_{t} w_{p_t} \cdot |\tau_t - a_t|$

Assume now accurate predictions

Assume now accurate predictions

(Extension to inaccurate predictions fairly simple)

 $x_1 = 3$


```
x_2 = 2
```


 $x_3 = 3$

 $x_1 = 3$

 $x_2 = 2$


```
x_3 = 3
```


 $x_1 = 4$


```
x_2 = 1
```


 $x_3 = 3$

 $x_1 = 4$

 $x_3 = 3$

 $x_3 = 3$

 $x_3 = 3$

k	=	8
l	=	3

 $x_1 = 4$

 $x_3 = 3$

 $x_1 = 4$

 $x_3 = 3$

 $x_1 = 4$

 $x_3 = 3$

Deterministic Algorithm:

$$\begin{split} x_i &:= \lceil \tilde{x}_i \rceil \text{ for some } \tilde{x}_i \ge 0\\ \textbf{Global: } \tilde{x}'_i &= -\frac{1}{w_i} \text{ until } \sum_i \lceil \tilde{x}_i \rceil \le k-1\\ \text{Then } \tilde{x}_r &:= \tilde{x}_r + 1 \text{, where } r = \text{class of requested page} \end{split}$$

Local: FIF

O(log *l*)-competitive randomized algorithm

Consider sub-instance of single weight class

Let C_t^m = pages in cache of FIF at time t if cache size m

Consider sub-instance of single weight class

Let C_t^m = pages in cache of FIF at time t if cache size m

Lemma: $C_t^1 \subset C_t^2 \subset C_t^3 \subset \dots \forall t$

Consider sub-instance of single weight class

Let C_t^m = pages in cache of FIF at time t if cache size m

Lemma:
$$C_t^1 \subset C_t^2 \subset C_t^3 \subset \dots \forall t$$

Consider sub-instance of single weight class

Let C_t^m = pages in cache of FIF at time t if cache size m

Lemma:
$$C_t^1 \subset C_t^2 \subset C_t^3 \subset \dots \forall t$$

Proof: Induction on *t*.

Consider sub-instance of single weight class

Let C_t^m = pages in cache of FIF at time t if cache size m

Definition: Page *p* has rank *m* at time *t* if $C_t^m \setminus C_t^{m-1} = \{p\}$

Lemma: Let p_1, p_2, \dots be pages sorted by rank at time t.

Lemma: Let p_1, p_2, \ldots be pages sorted by rank at time t.

Let p_{m_0} be requested next.

Lemma: Let p_1, p_2, \ldots be pages sorted by rank at time t.

Let p_{m_0} be requested next.

Let $m_0 > m_1 > m_2 > \dots$ s.t.

 $p_{m_{i+1}}$ is farthest-in-future among $C_t^{m_i-1} = \{p_1, p_2, \dots, p_{m_i-1}\}$

Lemma: Let p_1, p_2, \ldots be pages sorted by rank at time t.

Let p_{m_0} be requested next.

Let $m_0 > m_1 > m_2 > \dots$ s.t.

 $p_{m_{i+1}}$ is farthest-in-future among $C_t^{m_i-1} = \{p_1, p_2, \dots, p_{m_i-1}\}$

Then at time t + 1:

 $\triangleright p_{m_0}$ has rank 1

 $\triangleright p_{m_i}$ has rank m_{i-1}

other ranks unchanged

Local strategy

From class *i*, have pages with ranks $\leq \lfloor x_i \rfloor$ fully in cache,

page with rank $\lceil x_i \rceil$ fractionally.
Local strategy

From class *i*, have pages with ranks $\leq \lfloor x_i \rfloor$ fully in cache,

page with rank $\lceil x_i \rceil$ fractionally.

Concisely: cache =
$$\bigcup_{i=1}^{l} C_{it}^{x_i}$$

Local strategy

From class *i*, have pages with ranks $\leq \lfloor x_i \rfloor$ fully in cache,

page with rank $\lceil x_i \rceil$ fractionally.

Concisely: cache =
$$\bigcup_{i=1}^{l} C_{it}^{x}$$

Lemma: This is best local strategy, up to factor 3.

Local strategy

From class *i*, have pages with ranks $\leq \lfloor x_i \rfloor$ fully in cache,

page with rank $\lceil x_i \rceil$ fractionally.

Concisely: cache =
$$\bigcup_{i=1}^{l} C_{it}^{\chi}$$

Lemma: This is best local strategy, up to factor 3.

Proof idea: Use potential

$$\Phi = \sum_{i=1}^{l} w_i \cdot \max_{s} \left(n_i^*(s) - n_i(s) \right) \quad \text{where}$$

 $n_i(s) := \#$ pages in cache in pos $\leq s$ in next-request ordering of class-i-subinstance

$$m_i^*(s) := \dots$$
 in optimal cache

When rank-*r*-page of class *i* requested:

online cache miss iff $r > x_i$

offline cache miss iff $r > y_i$

Global strategy problem: Geometric view $\Delta := \left\{ x \in \mathbb{R}_{+}^{l} \mid \sum_{i} x_{i} = k \right\}$

At time t = 1, 2, ...

▶ $(i_t, r_t) \in [l] \times \mathbb{N}$ revealed

Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_{r_t}(x_{i_t}) + \sum_{i \in [l]} w_i |x_i(t) - x_i(t-1)|$$

where $c_r(z) := \begin{cases} 1 & z \le r-1 \\ 0 & z \ge r \\ linear & z \in [r-1,r] \end{cases}$

Global strategy problem: Geometric view $\Delta := \left\{ x \in \mathbb{R}_{+}^{l} \mid \sum_{i} x_{i} = k \right\}$

At time t = 1, 2, ...

▶ $(i_t, r_t) \in [l] \times \mathbb{N}$ revealed

Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_{r_t}(x_{i_t}) + \sum_{i \in [l]} w_i |x_i(t) - x_i(t-1)|$$

where $c_r(z) := \begin{cases} 1 & z \le r-1 \\ 0 & z \ge r \\ linear & z \in [r-1,r] \end{cases}$

HOWEVER: This problem has $\Omega(l)$ lower bound!

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

234562324536 possible

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

234562324536 possible

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

234562324536 possible

2345625

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

2 3 4 5 6 2 3 2 4 5 3 6 possible 2 3 4 5 6 2 5

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

- 234562324536 possible
- 2 3 456 25 impossible (unless predictions erroneous)

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof:

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2, ..., r-1\}$ not requested in between.

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2, ..., r - 1\}$ not requested in between. rank *r* page Let $t \in [t_1, t_2 - 1]$ last time when identity of $p_r(t)$ changes

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2,...,r-1\}$ not requested in between. rank *r* page Let $t \in [t_1, t_2 - 1]$ last time when identity of $p_r(t)$ changes $\Rightarrow p_r(t)$ is farthest in future among $p_2(t), ..., p_r(t)$

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2, ..., r-1\}$ not requested in between. rank *r* page Let $t \in [t_1, t_2 - 1]$ last time when identity of $p_r(t)$ changes $\Rightarrow p_r(t)$ is farthest in future among $p_2(t), ..., p_r(t)$ In particular: $p'_r(t)$ due to be requested earlier than $p_r(t)$

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2, ..., r-1\}$ not requested in between. rank *r* page Let $t \in [t_1, t_2 - 1]$ last time when identity of $p_r(t)$ changes $\Rightarrow p_r(t)$ is farthest in future among $p_2(t), ..., p_r(t)$ In particular: $p'_r(t)$ due to be requested earlier than $p_r(t)$

This remains true until time t_2 – Contradiction.

Lemma: Between two requests to rank r of class i, all ranks 2,3,...,r-1 are requested.

Proof: Suppose *r* requested at times $t_1 < t_2$ and some $r' \in \{2, ..., r-1\}$ not requested in between. rank *r* page Let $t \in [t_1, t_2 - 1]$ last time when identity of $p_r(t)$ changes $\Rightarrow p_r(t)$ is farthest in future among $p_2(t), ..., p_r(t)$ In particular: $p'_r(t)$ due to be requested earlier than $p_r(t)$

This remains true until time $t_2 - Contradiction$.

Global strategy problem: Geometric view $\Delta := \left\{ x \in \mathbb{R}_{+}^{l} \mid \sum_{i} x_{i} = k \right\}$

At time t = 1, 2, ...

- ▶ $(i_t, r_t) \in [l] \times \mathbb{N}$ arrives
- Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_{r_t}(x_{i_t}) + \sum_{i \in [l]} w_i |x_i(t) - x_i(t-1)|$$
where $c_r(z) := \begin{cases} 1 & z \leq r-1 \\ 0 & z \geq r \\ linear & z \in [r-1,r] \end{cases}$

Global strategy problem: Geometric view $\Delta := \left\{ x \in \mathbb{R}_{+}^{l} \mid \sum_{i} x_{i} = k \right\}$

At time t = 1, 2, ...

- ► $(i_t, r_t) \in [l] \times \mathbb{N}$ arrives s.t. all $(i_t, 2), (i_t, 3), \dots, (i_t, r_t 1)$ arrived since previous arrival of (i_t, r_t)
- Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_{r_t}(x_{i_t}) + \sum_{i \in [l]} w_i | x_i(t) - x_i(t-1) |$$

where $c_r(z) := \begin{cases} 1 & z \le r-1 \\ 0 & z \ge r \\ linear & z \in [r-1,r] \end{cases}$

At time t = 1, 2, ...

- Convex non-increasing $c_t \colon [0,k] \to \mathbb{R}_+$ arrives at $i_t \in [l]$
- Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_t(x_{i_t}) + \sum_{i \in [l]} w_i |x_i(t) - x_i(t-1)|$$

At time t = 1, 2, ...

- Convex non-increasing $c_t \colon [0,k] \to \mathbb{R}_+$ arrives at $i_t \in [l]$
- Algo chooses $x(t) \in \Delta$

Pay
$$w_{i_t} \cdot c_t(x_{i_t}) + \sum_{i \in [l]} w_i |x_i(t) - x_i(t-1)|$$

This problem is $\Theta(\log l)$ -competitive! [Bansal,Coester 22]

At time $t \in [0,\infty)$

- $\begin{array}{c} c_t(x_i) \\ c_{x_i} \\ x_i \\ k \end{array}$
- ▶ Convex non-increasing c_t : $[0,k] \to \mathbb{R}_+$ arrives at $i_t \in [l]$
- Algo chooses $x(t) \in \Delta$

Pay
$$\int_0^\infty \left(w_{i_t} \cdot c_t(x_{i_t}) + \sum_{i \in [l]} w_i |x_i'(t)| \right) dt$$

This problem is $\Theta(\log l)$ -competitive! [Bansal,Coester 22]

At time $t \in [0,\infty)$

- Convex non-increasing $c_t \colon [0,k] \to \mathbb{R}_+$ arrives at $i_t \in [l]$
- Algo chooses $x(t) \in \Delta$

Pay
$$\int_0^\infty \left(w_{i_t} + \sum_{i \in [l]} w_i |x'_i(t)| \right) dt$$

This problem is $\Theta(\log l)$ -competitive! [Bansal,Coester 22]

For each $i \in [l]$, auxiliary variable $\mu_i \ge 0$

At time $t \in [0,\infty)$

$$x'_{i}(t) = 1_{i=i_{t}} - \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}}$$

For each $i \in [l]$, auxiliary variable $\mu_i \ge 0$

At time $t \in [0,\infty)$

willingness to decrease x_i

 $C_t(X_i)$

 X_i

()

k

$$x'_{i}(t) = 1_{i=i_{t}} - \frac{\frac{\mu_{i}}{\sum_{j}\mu_{j}} + \frac{1}{l}}{B \cdot w_{i}}$$

For each $i \in [l]$, auxiliary variable $\mu_i \ge 0$

At time $t \in [0,\infty)$

willingness to decrease x_i

 $C_t(X_i)$

 X_i

()

k

$$x'_{i}(t) = 1_{i=i_{t}} - \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}} - B > 0 \text{ s.t. } \sum_{i} x'_{i}(t) = 0$$

For each $i \in [l]$, auxiliary variable $\mu_i \ge 0$

At time $t \in [0,\infty)$

willingness to decrease x_i

 $C_t(X_i)$

 X_i

()

k

$$x_{i}'(t) = 1_{i=i_{t}} - \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}}$$

$$B > 0 \text{ s.t. } \sum_{i} x_{i}'(t) = 0$$

$$\mu_{i}'(t) = \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}} - 2 \cdot 1_{i=i_{t}} \wedge w_{i} < \mu_{i} \cdot |c_{i}'(x_{i})|$$

Cost function only amortized convex

Cost function only amortized convex

For $i \in [l]$, maintain set $S_i \subset [x_{i_i}, \infty)$

Idea: $S_i \approx$ recently requested ranks of class i

Cost function only amortized convex

For $i \in [l]$, maintain set $S_i \subset [x_{i_i}, \infty)$

Idea: $S_i \approx$ recently requested ranks of class i Set $\mu_i := |S_i|$ and update S_i such that

$$\mu'_{i}(t) = \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}} - 2 \cdot 1_{i=i_{t} \wedge p \in S_{i}}$$

Cost function only amortized convex

For $i \in [l]$, maintain set $S_i \subset [x_{i_i}, \infty)$

Idea: $S_i \approx$ recently requested ranks of class i

Set $\mu_i := |S_i|$ and update S_i such that

$$\mu_{i}'(t) = \frac{\frac{\mu_{i}}{\sum_{j} \mu_{j}} + \frac{1}{l}}{B \cdot w_{i}} - 2 \cdot 1_{i=i_{t}} \text{ for } S_{i}$$
pointer that moves
continuously through
$$[r_{t} - 1, r_{t}]$$

Full algorithm (global strategy)

When rank r_t of class i_t requested:

• Move pointer p at rate 8 from $r_t - 1$ to r_t . Meanwhile:

If
$$p > x_{i_t}$$

$$x'_i(t) = 1_{i=i_t} - \frac{\frac{\mu_i}{\sum_j \mu_j} + \frac{1}{l}}{B \cdot w_i}$$

- ▶ $\forall i \neq i_t$: Add to S_i points passed by x_i
- Shrink S_{i_r} at rate x'_{i_r} from left & rate 1 from right
- ▶ If $p \notin S_{i_t}$: Grow S_{i_t} in $(r_t 1, p]$ at rate 2

Analysis uses potential 10D + 2M + 5C + 4S, where

$$D = \sum_{i} w_i \left(\mu_i + [x_i - y_i]_+ \right) \log \frac{\left(1 + \frac{1}{l}\right) \left(\mu_i + [x_i - y_i]_+ \right)}{\mu_i + \frac{1}{l} \left(\mu_i + [x_i - y_i]_+ \right)}$$

$$M = \sum_{i} w_{i} \left[\mu_{i} - 2(y_{i} - x_{i}) \right]_{+}$$

$$C = \sum_{i} w_{i} \int_{S_{i}} \frac{|(y_{i}, x_{i}] \cap R_{iu}|}{\mu_{i} + \frac{1}{l} (\mu_{i} + |(y_{i}, x_{i}] \cap R_{iu}|)} du$$

$$S = \sum_{i} w_{i} (|S_{i} \cap [y_{i}, \infty)| + [x_{i} - y_{i}]_{+})$$
Open problems

- Simpler algorithm/analysis?
- k-server with next-request time predictions?

Roadmap

- Sorting with Predictions
- Weighted Paging with Predictions
- Mixing Multiple Predictions
- Shortest Paths without a Map
- Randomized k-Server Conjecture

Mixing Predictions for Online Metric Algorithms

JOINT WORK WITH

ANTONIOS ANTONIADIS (UNIVERSITY OF TWENTE) MAREK ELIAS (BOCCONI UNIVERSITY) ADAM POLAK (MAX PLANCK INSTITUTE FOR INFORMATICS) BERTRAND SIMON (IN2P3 COMPUTING CENTER / CNRS) Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

- metric space (M, d)
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

- metric space (M, d)
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Examples:

paging, k-server, dynamic power management, convex body/function chasing, self-adjusting BSTs, ...

Metrical Task Systems (MTS) with multiple predictors

- metric space (M, d)
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Suggestions $\phi_{1t}, \phi_{2t}, ..., \phi_{kt} \in M$
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Metrical Task Systems (MTS) with multiple predictors

- metric space (M, d)
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Suggestions $\phi_{1t}, \phi_{2t}, ..., \phi_{kt} \in M$
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Algo A is ρ -competitive against B if $cost_A \le \rho \cdot cost_B + const$

Theorem: Against best dynamic combination, can be $\Theta(k^2)$ -competitive.

Theorem: Against best dynamic combination, can be $\Theta(k^2)$ -competitive.

Theorem: Against best dynamic combination with limited switches, can be $(1 + \epsilon)$ -competitive.

Theorem: Against best dynamic combination, can be $\Theta(k^2)$ -competitive.

Theorem: Against best dynamic combination with limited switches, can be $(1 + \epsilon)$ -competitive, even if only one suggestion queried per time step.

Theorem: Against best dynamic combination, can be $\Theta(k^2)$ -competitive.

Theorem: Against best dynamic combination with limited switches, can be $(1 + \epsilon)$ -competitive, even if only one suggestion queried per time step.

if one suggestion queried per time step

Shortest Paths without a Map, but with an Entropic Regularizer

JOINT WORK WITH

SÉBASTIEN BUBECK (MICROSOFT RESEARCH) YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

Vertices in layers
$$L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$$

- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

Vertices in layers
$$L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$$

- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed

- Vertices in layers $L_0 = \{s\}, L_1, L_2, ..., L_T = \{t\}$
- Weighted edges between adjacent layers
- Searcher starts at *s*
- When L_i reached: L_{i+1} and edges between L_i, L_{i+1} revealed
- cost = distance traveled until reaching t
- only parameter: $k := \max_i |L_i|$

Chasing Small Sets (aka Metrical Service Systems)

- > 1 server in metric space M
- At time t = 1, 2, ...
 - ▶ Set $S_t \subset M$ requested, $|S_t| \leq k$
 - Server must move to S_t
- Cost = distance moved

Theorem [Fiat et al. '91]: This problem is equivalent to LGT

Doubling strategy 9-competitive (best deterministic algo)

Doubling strategy 9-competitive (best deterministic algo)

State of the Art:

Old Bounds:

- deterministic: $O(k \cdot 2^k) \cap \Omega(2^k)$ -competitive [Burley '96, Fiat et al. '91]
- ► randomized: $O(k^{13}) \cap \Omega(k^2/\log^{1+\epsilon} k)$ [Ramesh '93]
 - stuck since 1993

State of the Art:

Old Bounds:

- deterministic: $O(k \cdot 2^k) \cap \Omega(2^k)$ -competitive [Burley '96, Fiat et al. '91]
- ► randomized: $O(k^{13}) \cap \Omega(k^2/\log^{1+\epsilon} k)$ [Ramesh '93]
 - stuck since 1993

New tight randomized bound: $\Theta(k^2)$ [Bubeck-Coester-Rabani 22,23]

Evolving Tree Game (ETG)

Binary tree evolves over time:

Agent must stay at leaves

Cost = distance moved by agent

Reduction: LGT \leq ETG

Wlog layered graph is a tree [Fiat et al. '91]
(build online the tree of shortest paths from s)

Reduction: LGT \leq ETG

Wlog layered graph is a tree [Fiat et al. '91]
(build online the tree of shortest paths from s)

Wlog layered graph is a tree [Fiat et al. '91]
(build online the tree of shortest paths from s)

Observation: depth \leq #leaves $= |L_i| \leq k$

- Fork: Do nothing (almost)
- Growth:

Deletion:

Fork: Do nothing (almost)

Growth:

Fork: Do nothing (almost)

Growth:

$$x'_{u} = -\frac{2x_{u}}{\tilde{w}_{u}}\tilde{w}'_{u} + \frac{x_{u} + \delta_{u}}{\tilde{w}_{u}}\left(\lambda_{p(u)} - \lambda_{u}\right)$$

Deletion:

Fork: Do nothing (almost)

Deletion:

Fork: Do nothing (almost)

Analysis

For a suitable potential function P, for any step (discrete or continuous) we have

 $\Delta \text{cost} + \Delta P \leq O(k^2) \cdot \Delta \text{opt}$

Analysis

For a suitable potential function *P*, for any step (discrete or continuous) we have

 $\Delta \text{cost} + \Delta P \le O(k^2) \cdot \Delta \text{opt}$

$$P := 2\sum_{u} \tilde{w}_{u} \left(4ky_{u} \log \frac{1+\delta_{u}}{x_{u}+\delta_{u}} + (2k - \operatorname{depth}(u))x_{u} \right)$$

Analysis

For a suitable potential function *P*, for any step (discrete or continuous) we have

 $\Delta \text{cost} + \Delta P \le O(k^2) \cdot \Delta \text{opt}$

$$P := 2\sum_{u} \tilde{w}_{u} \left(4ky_{u} \log \frac{1+\delta_{u}}{x_{u}+\delta_{u}} + (2k - \operatorname{depth}(u))x_{u} \right)$$

WHERE IS THIS ALL COMING FROM???

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

- metric space (M, d), |M| = n
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose server position $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Randomized MTS on Trees [Bubeck,Cohen,Lee,Lee '19]

p(u)

W_u

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v) = u} x_v \right\}$$
$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v) = u} x_v \right\}$$

- Cost vectors $c(t) \in \mathbb{R}^V_+$ (supported on leaves) appear in continuous time
- Algo maintains $x(t) \in K$
- ▶ Pays $\int (\langle c(t), x(t) \rangle + \langle w, |x'(t)| \rangle) dt$

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v)=u} x_v \right\}$$

- Cost vectors $c(t) \in \mathbb{R}^V_+$ (supported on leaves) appear in continuous time
- Algo maintains x(t) ∈ K
 Pays ∫ (⟨c(t), x(t)⟩ + ⟨w, |x'(t)|⟩) dt

Algorithm:

$$x(t) = \arg\min_{x \in K} \operatorname{opt}_{t}(x) + \Phi(x)$$

$$\approx -\operatorname{weighted entropy}_{\approx \operatorname{predictability of } x}$$

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v)=u} x_v \right\}$$

- Cost vectors $c(t) \in \mathbb{R}^V_+$ (supported on leaves) appear in continuous time
- Algo maintains x(t) ∈ K
 Pays ((⟨c(t), x(t)⟩ + ⟨w, |x'(t)|⟩) dt

Algorithm:

$$x(t) = \arg\min_{x \in K} \operatorname{opt}_{t}(x) + \Phi(x)$$

$$\approx -\operatorname{weighted entropy}_{t \approx \operatorname{predictability of } x}$$

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v)=u} x_v \right\}$$

Algorithm:

p(u)

W_u

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v)=u} x_v \right\}$$

Algorithm:

One can show, this is equivalent to:

 $\nabla^2 \Phi(x(t)) x'(t) \in -c(t) - N_K(x(t))$

normal cone of K at x(t)

p(u)

$$K := \left\{ x \in [0,1]^V \middle| x_r = 1, \forall u \neq \text{leaf: } x_u = \sum_{v: \ p(v)=u} x_v \right\}$$

Algorithm:

One can show, this is equivalent to:

 $\nabla^2 \Phi(x(t)) x'(t) \in -c(t) - N_K(x(t))$

p(u)

W_u

normal cone of K at x(t)

- Let $y(t) \in K$ be offline algo
- $D(t) := \Phi(y(t)) \Phi(x(t)) \langle \nabla \Phi(x(t)), y(t) x(t) \rangle$

- Let $y(t) \in K$ be offline algo
- $D(t) := \Phi(y(t)) \Phi(x(t)) \langle \nabla \Phi(x(t)), y(t) x(t) \rangle$
- Short calculation \Longrightarrow

 $\langle c(t), x(t) \rangle + D'(t) \le \langle c(t), y(t) \rangle + \operatorname{Lip}_{\Phi} \cdot \langle w, |y'(t)| \rangle$

- Let $y(t) \in K$ be offline algo
- $D(t) := \Phi(y(t)) \Phi(x(t)) \langle \nabla \Phi(x(t)), y(t) x(t) \rangle$
- Short calculation \Longrightarrow

 $\langle c(t), x(t) \rangle + D'(t) \le \langle c(t), y(t) \rangle + \operatorname{Lip}_{\Phi} \cdot \langle w, |y'(t)| \rangle$

Choosing $\Phi(x) = \sum_{u} w_u (x_u + \delta_u) \log(x_u + \delta_u)$ for fixed $\delta \in K$ [Bubeck,Cohen,Lee,Lee '19] show

 $\langle w, (x'(t))_+ \rangle + \Psi'(t) \le \operatorname{depth} \cdot \langle c(t), x(t) + \delta \rangle$

where $\Psi(t) := -\sum \text{depth}(u) \cdot w_u x_u(t)$

Idea: Same algo, but with c(t) := w'(t)

Idea: Same algo, but with c(t) := w'(t)

Three complications:

Idea: Same algo, but with c(t) := w'(t)

Three complications:

Tree topology (and hence *K*) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

Idea: Same algo, but with c(t) := w'(t)

Three complications:

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

When depth(u) decreases, Ψ increases

Idea: Same algo, but with c(t) := w'(t)

Three complications:

Tree topology (and hence *K*) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

When depth(u) decreases, Ψ increases

When w grows, D increases

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

In MTS, choice
$$\delta_u = \frac{\# \text{ leaves below } u}{\# \text{ leaves}}$$
 ensures

$$\operatorname{Lip}_{\Phi} = O\left(\log \frac{1}{\min_u \delta_u}\right) = O(\log(\# \text{ leaves}))$$

This δ_u can increase/decrease due to Fork/Delete \implies bad effects on D

Tree topology (and hence *K*) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

In MTS, choice
$$\delta_u = \frac{\# \text{ leaves below } u}{\# \text{ leaves}}$$
 ensures

$$\operatorname{Lip}_{\Phi} = O\left(\log \frac{1}{\min_u \delta_u}\right) = O(\log(\# \text{ leaves}))$$

This δ_u can increase/decrease due to Fork/Delete \implies bad effects on D

Solution: $\delta_u := 2^{-\operatorname{depth}(u)}$

Then $\delta \in K$ and δ_u only increases \Longrightarrow good effects on D

$$\operatorname{Lip}_{\Phi} = O\left(\log \frac{1}{\min_{u} \delta_{u}}\right) = O(\operatorname{depth})$$

Three complications:

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

When depth(u) decreases, Ψ increases

When w grows, D increases

When depth(u) decreases, Ψ increases

Solution: Replace w_u by \tilde{w}_u to cancel bad effects.

Solution: Replace w_u by \tilde{w}_u to cancel bad effects.

Specifically,
$$\tilde{w}_u := \frac{2k-1}{2k - \text{depth}(u)} w_u$$

Then $w_u \leq \tilde{w}_u \leq 2w_u$, so error is small

Three complications:

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

When depth(u) decreases, Ψ increases

When w grows, D increases

When w grows, D increases

Solution: Essentially, replace

$$D = \sum_{u} \tilde{w}_{u} \left((y_{u} + \delta_{u}) \log \frac{y_{u} + \delta_{u}}{x_{u} + \delta_{u}} + x_{u} - y_{u} \right) \text{ and } c(t) = w'(t)$$

by

$$D = \sum_{u} \tilde{w}_{u} \left(2y_{u} \log \frac{y_{u} + \delta_{u}}{x_{u} + \delta_{u}} + x_{u} - y_{u} \right) \text{ and } c(t) = \frac{2x}{x + \delta} w'(t)$$

Now increase of *D* due to growth of *w* can be charged to OPT.

Tree topology (and hence K) evolves \rightsquigarrow cannot choose fixed $\delta \in K$

When depth(u) decreases, Ψ increases

When w grows, D increases

Mirror descent works even in evolving metric spaces

- $O(\text{depth} \cdot \log n)$ -competitiveness for MTS becomes:
 - O(depth²) for evolving tree game
 - $O(k^2)$ for LGT and chasing small sets

The Randomized k-Server Conjecture is ****!

JOINT WORK WITH

SÉBASTIEN BUBECK (MICROSOFT RESEARCH) YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

- ▶ k servers in metric space (M, d)
- At time t = 1, 2, ...
 - ▶ point $r_t \in M$ requested
 - A server must move to r_t

- ▶ k servers in metric space (M, d)
- At time t = 1, 2, ...
 - ▶ point $r_t \in M$ requested
 - A server must move to r_t

- ▶ k servers in metric space (M, d)
- At time t = 1, 2, ...
 - ▶ point $r_t \in M$ requested
 - A server must move to r_t

- k servers in metric space (M, d)
- At time t = 1, 2, ...
 - ▶ point $r_t \in M$ requested
 - A server must move to r_t
- Cost = distance traveled

- k servers in metric space (M, d)
- At time t = 1, 2, ...
 - ▶ point $r_t \in M$ requested
 - A server must move to r_t
- Cost = distance traveled

k-server often called "holy grail of competitive analysis"

k-server conjecture: $\exists k$ -competitive deterministic algorithm

k-server conjecture: $\exists k$ -competitive deterministic algorithm State of the art:

- $\geq k$ [Manasse, McGeoch, Sleator 88]
- ▶ $\leq 2k 1$ [Koutsoupias, Papadimitriou 94]
- = k in special cases

k-server conjecture: $\exists k$ -competitive deterministic algorithm State of the art:

- $\geq k$ [Manasse, McGeoch, Sleator 88]
- $\leq 2k 1$ [Koutsoupias, Papadimitriou 94]
- = k in special cases
- Randomized k-server conjecture: $\exists O(\log k)$ -comp. rand. algo

k-server conjecture: $\exists k$ -competitive deterministic algorithm State of the art:

- $\geq k$ [Manasse, McGeoch, Sleator 88]
- ▶ $\leq 2k 1$ [Koutsoupias, Papadimitriou 94]
- = k in special cases

Randomized k-server conjecture: $\exists O(\log k)$ -comp. rand. algo State of the art:

- Ω(log k / log log k) [Bartal,Bollobas,Mendel 01, Bartal,Linial,Mendel,Naor 03]
- O(log² k log n) in n-point metrics [Bubeck,Cohen,Lee,Lee,Madry 18]
 O(log³ k log Δ) where Δ=aspect ratio [Bubeck,Cohen,Lee,Lee,Madry 18]
- $\Theta(\log k)$ in special cases
Randomized *k*-server conjecture:

 $\exists \operatorname{an} O(\log k)$ -competitive randomized algorithm

Theorem [Bubeck,Coester,Rabani 23]: $\exists no O(log k)$ -competitive randomized algorithm

Theorem [Bubeck,Coester,Rabani 23]: $\exists no O(\log k)$ -competitive randomized algorithm

More precisely:

Theorem: Comp. ratio is $\Omega(\log^2 k)$ in some metrics of k + 1 points

Theorem [Bubeck,Coester,Rabani 23]: $\exists no O(\log k)$ -competitive randomized algorithm

More precisely:

Theorem: Comp. ratio is $\Omega(\log^2 k)$ in some metrics of k + 1 points

Also tight universal lower bound:

Theorem: Comp. ratio is $\Omega(\log k)$ in all metrics of > k points

Metrical Task Systems (MTS)

- metric space (M, d), |M| = n
- ▶ 1 server, initially at $p_0 \in M$
- ▶ At time *t* = 1,2,...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

Metrical Task Systems (MTS)

- metric space (M, d), |M| = n
- ▶ 1 server, initially at $p_0 \in M$
- At time t = 1, 2, ...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

MTS with $c_t: M \to \{0,\infty\} \equiv (n-1)$ -server problem

Metrical Task Systems (MTS)

- metric space (M, d), |M| = n
- ▶ 1 server, initially at $p_0 \in M$
- At time t = 1, 2, ...
 - ▶ $c_t: M \to \mathbb{R}_+ \cup \{\infty\}$ revealed
 - Choose $p_t \in M$
 - Pay $d(p_{t-1}, p_t) + c_t(p_t)$

MTS with $c_t: M \to \{0, \infty\} \equiv (n-1)$ -server problem

Corollary: Comp. ratio of MTS is $\Omega(\log^2 n)$ in *some* metrics $\Omega(\log n)$ in *all* metrics

(tight)

(tight)

• metric space (M, d) with $d(x, y) = 1_{x \neq y}$

• metric space (\overline{M}, d) with $d(x, y) = 1_{x \neq y}$

$$c_t(p) := \begin{cases} \infty & p = r \\ 0 & p \neq r \end{cases}$$

for $r_t \in M$ unif. at random

• metric space (M, d) with $d(x, y) = 1_{x \neq y}$

$$c_t(p) := \begin{cases} \infty & p = r \\ 0 & p \neq r \end{cases}$$

for $r_t \in M$ unif. at random

• metric space (M, d) with $d(x, y) = \overline{1_{x \neq y}}$

$$c_t(p) := \begin{cases} \infty & p = r \\ 0 & p \neq r \end{cases}$$

for $r_t \in M$ unif. at random

• metric space (M, d) with $d(x, y) = 1_{x \neq y}$

 $c_t(p) := \begin{cases} \infty & p = r_t \\ 0 & p \neq r_t \end{cases}$

- $\mathbf{E}[\mathbf{cost}] = \#\mathbf{requests} / n$
- $\mathbf{E}[\mathsf{opt}] = \#\mathsf{requests} / \Omega(n \log n)$

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

Metric space is similar to diamond graph

 $M_{w+1} =$

• 🔇

• Construct metric space M_w recursively

Goal: (random) sequence M_w s.t. opt = diam (M_w)

 $cost \ge R_w \cdot diam(M_w)$

• Construct metric space M_w recursively

Goal: (random) sequence M_w s.t. opt = diam (M_w)

 $cost \ge R_w \cdot diam(M_w)$

Construct metric space < M_w recursively

► Goal: (random) sequence M_w s.t. opt = diam (M_w) cost ≥ R_w · diam (M_w)

 $3R_{1}$

• Construct metric space M_w recursively

Goal: (random) sequence M_w s. t. opt = diam (M_w) cost $\geq R_w \cdot diam(M_w)$

• Construct metric space M_w recursively

► Goal: (random) sequence M_w s. t. opt = diam (M_w) cost $\geq R_w \cdot diam(M_w)$

• Construct metric space M_w recursively

► Goal: (random) sequence M_w s. t. opt = diam (M_w) cost $\geq R_w \cdot diam(M_w)$

• Construct metric space M_w recursively

► Goal: (random) sequence M_w s. t. opt = diam (M_w) cost $\geq R_w \cdot diam(M_w)$

• Construct metric space M_w recursively

• Construct metric space M_w recursively

Construct metric space < M_w recursively

Construct metric space M_w recursively

Construct metric space M_w recursively

• Construct metric space M_w recursively

Construct metric space < M_w recursively

• Construct metric space M_w recursively

 $+ 0.5 \cdot R_w \cdot R_w \cdot \operatorname{diam}(M_w)$

• Construct metric space M_w recursively

• Construct metric space $\langle M_w \rangle$ recursively

• Construct metric space $\langle M_w \rangle$ recursively

• Construct metric space $\langle M_w \rangle$ recursively

• Construct metric space $\langle M_w \rangle$ recursively

• Construct metric space $\langle M_w \rangle$ recursively

• Construct metric space M_w recursively

• Construct metric space M_w recursively

• Construct metric space M_w recursively

Construct metric space < M_w recursively

 $cost \ge (3 \cdot R_w + \sqrt{R_w}) \cdot R_w \cdot diam(M_w)$ $opt = 3 \cdot R_w \cdot diam(M_w)$

 $cost \ge (3 \cdot R_w + \sqrt{R_w}) \cdot R_w \cdot diam(M_w)$ $opt = 3 \cdot R_w \cdot diam(M_w)$

Need
$$R_{w+1} \le \frac{\text{cost}}{\text{opt}}$$
, so $R_{w+1} \le R_w + \frac{\sqrt{R_w}}{3}$

 $cost \ge (3 \cdot R_w + \sqrt{R_w}) \cdot R_w \cdot diam(M_w)$ $opt = 3 \cdot R_w \cdot diam(M_w)$

Need
$$R_{w+1} \leq \frac{\text{cost}}{\text{opt}}$$
, so $R_{w+1} \leq R_w + \frac{\sqrt{R_w}}{3}$
E.g. $R_w = \frac{w^2}{81} = \Omega(w^2)$

$$cost \ge (3 \cdot R_w + \sqrt{R_w}) \cdot R_w \cdot diam(M_w)$$
$$opt = 3 \cdot R_w \cdot diam(M_w)$$

Need
$$R_{w+1} \leq \frac{\text{cost}}{\text{opt}}$$
, so $R_{w+1} \leq R_w + \frac{\sqrt{R_w}}{3}$

E.g.
$$R_w = \frac{w^2}{81} = \Omega(w^2)$$

$$n = |M_{w+1}| \le 6R_w |M_w| \le \prod_{i=1}^w 6R_i \le \prod_{i=1}^w i^2 = (w!)^2$$

 $= 2^{O(w \log w)}$

$$cost \ge (3 \cdot R_w + \sqrt{R_w}) \cdot R_w \cdot diam(M_w)$$
$$opt = 3 \cdot R_w \cdot diam(M_w)$$

Need
$$R_{w+1} \leq \frac{\text{cost}}{\text{opt}}$$
, so $R_{w+1} \leq R_w + \frac{\sqrt{R_w}}{3}$

E.g.
$$R_w = \frac{w^2}{81} = \Omega(w^2)$$

$$n = |M_{w+1}| \le 6R_w |M_w| \le \prod_{i=1}^w 6R_i \le \prod_{i=1}^w i^2 = (w!)^2$$

 $= 2^{O(w \log w)}$

$$\implies R_w = \Omega(w^2) = \Omega\left(\left(\frac{\log n}{\log \log n}\right)^2\right)$$

Removing log log

Try same with smaller n: use only 6 copies of M_w

 $|n| = |M_w| \le 6^w$

Removing log log

Try same with smaller n: use only 6 copies of M_w

- $\mid n = |M_w| \le 6^w$
- Problem:
 - want to flip many coins, but only 3 copies per branch

Removing log log

Try same with smaller n: use only 6 copies of M_w

- $\mid n = |M_w| \le 6^w$
- Problem:
 - want to flip many coins, but only 3 copies per branch
- Idea:
 - issue recursive request sequence "chunk by chunk"
 - need refined inductive hypothesis

Key Lemma: \exists rand. sequence of chunks $\rho_1 \rho_2 \dots \rho_m$ and rand. variables c_1, \dots, c_m s.t.:

- $\mathbb{E}\left[\operatorname{cost}(\rho_{i}) \mid \rho_{1} \dots \rho_{i-1}\right] \geq c_{i}$ $\mathbb{E}\left[\sum_{i} c_{i}\right] = \Omega(w^{2}) \cdot \operatorname{opt}$
- $c_i \approx \text{opt} = \text{diam}(M_w)$

Key Lemma: \exists rand. sequence of chunks $\rho_1 \rho_2 \dots \rho_m$ and rand. variables c_1, \dots, c_m s.t.:

- $\mathbf{E}\left[\mathsf{cost}(\rho_i) \mid \rho_1 \dots \rho_{i-1}\right] \ge c_i$
- $\mathbf{E}\left[\sum_{i} c_{i}\right] = \Omega(w^{2}) \cdot \mathsf{opt}$
- $\triangleright c_i \approx \text{opt} = \text{diam}(M_w)$

Proof idea:

- biased coins s.t. "cost at top cost at bottom" is martingale
- > martingale CLT/Berry-Esseen yields gap $\pm w \cdot opt$
- combine small chunks s.t. $c_i \approx \text{opt}$

Implications for other Problems

- Improved LBs for k-taxi, distributed paging, metric allocation
- Similar construction $\implies \Omega(k^2)$ for layered graph traversal

Conclusion

- Competitive ratio of MTS is
 - Θ(log n) on easiest metrics
 - $\Theta(\log^2 n)$ on hardest metrics
- Competitive ratio of k-server is
 - $\Theta(\log k)$ on easiest metrics with $\geq k + 1$ points
 - $\Theta(\log^2 k)$ on hardest metrics with = k + 1 points
 - Ω(log² k) ∩ O (min{log² k log n, log³ k log Δ, k}) on hardest metrics

Conclusion

- Competitive ratio of MTS is
 - Θ(log n) on easiest metrics
 - $\Theta(\log^2 n)$ on hardest metrics
- Competitive ratio of k-server is
 - $\Theta(\log k)$ on easiest metrics with $\geq k + 1$ points
 - $\Theta(\log^2 k)$ on hardest metrics with = k + 1 points
 - Ω(log² k) ∩ O(min{log² k log n, log³ k log Δ, k}) on hardest
 metrics
- Take-aways: diamond graphs are cool, consider recursion chunk by chunk, look for proof ideas in old poems