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Algorithms with predictions


Goal: Good predictions  much better performance 
           Bad predictions  same worst-case guarantee

⟹
⟹

Real life  worst case, often predictable 
(e.g., solve similar instances repeatedly)
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[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction  of position ̂p p

▸ Time , where O(log η) η = | ̂p − p |

̂p p



Growing rapidly in last 5 years


▸ Caching


▸ Scheduling/Load Balancing


▸ Rent or buy problems


▸ Metrical Task Systems


▸ Matching


▸ Data Structures


▸ …


Improve competitive, approx. ratio, running time, space, …

Algorithms with Predictions (aka Learning-Augmented Algorithms)



Sorting with Predictions

JOINT WORK WITH XINGJIAN BAI (OXFORD)



Task: Sort  wrt. < 

Setting 1: Receive prediction of positions in sorted list


Setting 2: Access to quick-and-dirty comparisons

a1, a2, …, an

Sorting with Predictions [Bai,Coester 23]
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Input:  
            prediction  of ’s position in sorted list

a1, a2, …, an
̂p(i) ai

Similar: Adaptive Sorting 
We consider element-wise error  fine-grained guarantees⇝

Notation: true position of  in sorted list 
                   

p(i) = ai
ηi = | ̂p(i) − p(i) |

Theorem:  algorithm that sorts in time ∃ O (∑
n

i=1
log(ηi + 2))

Sorting with Positional Predictions
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But shifting subarrays slow



But shifting subarrays slow

Better: Replace array by BBST to get time O (∑i
log(ηi + 2))



More involved algorithm (see our paper [Bai,Coester 23])


     comparisons, where


          
                             

⟹ O (∑i
log(η̃i + 2))

η̃i := min {#{j : aj < ai, ̂p( j) ≥ ̂p(i)},
#{j : aj > ai, ̂p( j) ≤ ̂p(i)}}



Input:  
            slow-and-clean comparator < 
            quick-and-dirty comparator  

a1, a2, …, an

<̂

Error:  
 

ηi := #{j : (aj < ai) ≠ (aj <̂ ai)}

Sorting with Dirty and Clean Comparisons



Input:  
            slow-and-clean comparator < 
            quick-and-dirty comparator  

a1, a2, …, an

<̂

Error:  
 

ηi := #{j : (aj < ai) ≠ (aj <̂ ai)}

Theorem: Can sort with  dirty comparisons 
                  and  clean comparisons

O(n log n)
O (∑

n

i=1
log(ηi + 2))

Sorting with Dirty and Clean Comparisons
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Experiments
Sorting countries by population (n=261)


Predictions: ranking  years agox



Experiments
Classes of consecutive items (n=1,000,000)


Predictions: random position within class



Experiments

Repeatedly add  to , for  random  (n=1,000,000)±1 ̂p(i) i



Experiments

Fraction  of items damaged  (n=100,000)
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<̂



Experiments

Fraction  of items damaged  (n=100,000)


 random if both items damaged, otherwise correct

r

<̂



Roadmap

▸ Sorting with Predictions


▸ Weighted Paging with Predictions (today + tomorrow)


▸ Mixing Multiple Predictions (tomorrow or Thursday)


▸ Shortest Paths without a Map (Thursday)


▸ Randomized k-Server Conjecture (Thursday)



Learning-Augmented Weighted Paging

JOINT WORK WITH


NIKHIL BANSAL (UNIVERSITY OF MICHIGAN)

RAVI KUMAR (GOOGLE)


MANISH PUROHIT (GOOGLE)

ERIK VEE (GOOGLE)
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Algorithm FIF [Belady 66]

On cache miss, evict page whose next request is 
farthest in future.

Theorem: FIF is optimal. 
 
 
 
Requests revealed one by one

Algorithm -competitive if  
                              cost opt + const 

ρ
≤ ρ ⋅

Competitive ratio of paging:  deterministically [ST85] 
                                                      randomized [FKLMSY91]

k
Θ(log k)

Online paging
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Learning-Augmented Paging [Lykouris & Vassilvitskii 18]

At time t, page  requested and additional input:pt

predicted time when  next requestedτt := pt

[LV 18]: -competitive, where 

                                                                       

O min { η
opt

, log k}
η := ∑

t

|τt − at |

 
[Rohatgi 20, Wei 20]: Improved dependence on η

prediction truth



▸ cache can hold  pages


▸ Page  has weight 


▸ at time 


▸ page  requested


▸ if cache (“cache miss”)


▸ evict a page from cache


▸ fetch  into cache


▸ pay 

k

p wp > 0

t = 1,2,…

pt

pt ∉

pt

wpt

Weighted Paging
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▸ Same comp. ratio as paging (  determ.,  rand.), but 
techniques more challenging

k

k Θ(log k)

Weighted Paging

FIF with weights?

Weighted paging with predictions?
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 deterministic and  randomized even with 

accurate predictions of next request times [JPS20,ACEPS20]
Ω(k) Ω(log k)

[JPS20]: Prediction of entire request sequence until each page 
requested again

[ACEPS20]: Prediction of optimal actions
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Learning-Augmented Weighted Paging
 deterministic and  randomized with 

accurate predictions of next request times [JPS20,ACEPS20]


where #weight classes

Ω(l) Ω(log l)

l =

[Bansal,Coester,Kumar,Purohit,Vee 22]:


Theorem: These bounds are tight.
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▸ cache can hold  pages


▸ at time 


▸ page  requested


▸ prediction  of next time when  requested again


▸ if cache (“cache miss”)


▸ evict a page from cache


▸ fetch  into cache for cost 


Parameter: #weight classes

k

t = 1,2,…

pt

τt pt

pt ∉

pt wpt

l =

Recap: Learning-Augmented Weighted Paging

≤ O (log
maxp wp

minp wp )



Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]


If predictions accurate, there is


▸ -competitive deterministic algorithm


▸ -competitive randomized algorithm

l

O(log l)
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Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions unreliable, there is

▸ -competitive deterministic algorithmO(min {l +
l ⋅ ϵ
opt

, k})

▸ -competitive randomized 

algorithm

O(min {log l +
l ⋅ ϵ
opt

, log k})

where  #surprises in weight class iϵ =
l

∑
i=1

wi ⋅

                ≤ 2∑
t

wpt
⋅ |τt − at |
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(Extension to inaccurate predictions fairly simple)
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Algorithm consists of global strategy and local strategy

How many pages  from 
each weight class i?

xi Which  pages?xi

 for some 


Global:  until  

               Then , where class of requested page 
 
Local: FIF

xi := ⌈x̃i⌉ x̃i ≥ 0

x̃′￼i = −
1
wi ∑

i

⌈x̃i⌉ ≤ k − 1

x̃r := x̃r + 1 r =

Deterministic Algorithm:



-competitive randomized algorithmO(log l)



Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Page ranks



Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Page ranks



Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks



Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Proof: Induction on .               
 
 
 
 

t ⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks



Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Proof: Induction on .               
 
 
 
 

t

Definition: Page  has rank  at time  if p m t Cm
t ∖Cm−1

t = {p}

⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks
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Lemma: Let  be pages sorted by rank at time .p1, p2, … t

Let  be requested next.pm0

Let  s.t.m0 > m1 > m2 > …

       is farthest-in-future among pmi+1
Cmi−1

t = {p1, p2, …, pmi−1}

Then at time t + 1:

▸  has rank pm0
1

▸  has rank pmi
mi−1

▸ other ranks unchanged

Change of ranks
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From class , have pages with ranks  fully in cache,i ≤ ⌊xi⌋

                                  page with rank  fractionally.⌈xi⌉

Concisely: cache =
l

⋃
i=1

Cxi
it

Lemma: This is best local strategy, up to factor 3.

Proof idea: Use potential

                               whereΦ =
l

∑
i=1

wi ⋅ max
s (n*i (s) − ni(s))

#pages in cache in pos  in next-request ordering 
                                                                         of class-i-subinstance
ni(s) := ≤ s

 ….. in optimal cache ……n*i (s) :=

Local strategy
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online cache =
l

⋃
i=1

Cxi(t)
it

offline cache   for unknown =
l

⋃
i=1

Cyi(t)
it yi(t)

When rank- -page of class  requested:r i

      online cache miss iff r > xi

      offline cache miss iff r > yi



Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸  revealed(it, rt) ∈ [l] × ℕ

▸ Algo chooses x(t) ∈ Δ

▸ Pay   

                                        where 

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

Global strategy problem: Geometric view



Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸  revealed(it, rt) ∈ [l] × ℕ

▸ Algo chooses x(t) ∈ Δ

▸ Pay   

                                        where 

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

HOWEVER: This problem has  lower bound!Ω(l)

Global strategy problem: Geometric view
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Lemma: Between two requests to rank  of class , 
all ranks  are requested.

r i
2,3,…, r − 1

        possible2 3 4 5 6 2 3 2 4 5 3 6

   (unless predictions erroneous)

Repeat property

impossible
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At time 


▸  arrives s.t. all  
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▸ Algo chooses 


▸ Pay   

                                        where 

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t = 1,2,…

(it, rt) ∈ [l] × ℕ (it,2), (it,3), …, (it, rt − 1)
(it, rt)

x(t) ∈ Δ

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

Global strategy problem: Geometric view
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Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t ∈ [0,∞)

ct : [0,k] → ℝ+ it ∈ [l]

x(t) ∈ Δ

∫
∞

0 (wit ⋅ ct(xit) + ∑i∈[l]
wi |x′￼i(t) |) dt

Θ(log l)

A similar problem

0 k

ct(xi)

xi






At time 


▸ Convex non-increasing  arrives at 


▸ Algo chooses 


▸ Pay  


This problem is -competitive! [Bansal,Coester 22]

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t ∈ [0,∞)

ct : [0,k] → ℝ+ it ∈ [l]

x(t) ∈ Δ

∫
∞

0 (wit + ∑i∈[l]
wi |x′￼i(t) |) dt

Θ(log l)

A similar problem

0 k

ct(xi)

xi

1{



For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

       x′￼i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

0 k

ct(xi)

xi
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At time t ∈ [0,∞)

       x′￼i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

willingness to decrease xi
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For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

       x′￼i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

  s.t. B > 0 ∑i
x′￼i(t) = 0

willingness to decrease xi

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]



For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

       x′￼i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

       μ′￼i(t) =

μi

∑j μj
+ 1

l

B ⋅ wi
− 2 ⋅ 1i=it ∧ wi<μi⋅|c′￼t(xi)|

Algorithm

  s.t. B > 0 ∑i
x′￼i(t) = 0

willingness to decrease xi

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]
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Cost function only amortized convex

▸ For , maintain set  
 
         Idea: recently requested ranks of class i

i ∈ [l] Si ⊂ [xit, ∞)

Si ≈

▸ Set  and update  such that 
       

                     

μi := |Si | Si

μ′￼i(t) =

μi

∑j μj
+ 1

l

B ⋅ wi
− 2 ⋅ 1i=it ∧ p∈Si

Back to weighted paging

pointer that moves 
continuously through 

[rt − 1,rt]



When rank  of class  requested:


▸ Move pointer  at rate  from  to . Meanwhile:


▸ If  

         


▸ :  Add to  points passed by 


▸ Shrink  at rate  from left & rate  from right


▸ If  Grow  in  at rate 

rt it

p 8 rt − 1 rt

p > xit

x′￼i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

∀i ≠ it Si xi

Sit x′￼it 1

p ∉ Sit : Sit (rt − 1,p] 2

Full algorithm (global strategy)



Analysis uses potential , where


       


       


       


        

10D + 2M + 5C + 4S

D = ∑i
wi (μi + [xi − yi]+) log

(1 + 1
l ) (μi + [xi − yi]+)

μi + 1
l (μi + [xi − yi]+)

M = ∑i
wi [μi − 2(yi − xi)]+

C = ∑i
wi ∫Si

| (yi, xi] ∩ Riu |

μi + 1
l (μi + | (yi, xi] ∩ Riu |)

du

S = ∑i
wi ( |Si ∩ [yi, ∞) | + [xi − yi]+)



▸ Simpler algorithm/analysis?


▸ -server with next-request time predictions?k

Open problems



Roadmap
▸ Sorting with Predictions


▸ Weighted Paging with Predictions


▸ Mixing Multiple Predictions


▸ Shortest Paths without a Map


▸ Randomized k-Server Conjecture



Mixing Predictions 
for Online Metric Algorithms

JOINT WORK WITH


ANTONIOS ANTONIADIS (UNIVERSITY OF TWENTE)

MAREK ELIAS (BOCCONI UNIVERSITY)


ADAM POLAK (MAX PLANCK INSTITUTE FOR INFORMATICS)

BERTRAND SIMON (IN2P3 COMPUTING CENTER / CNRS)



▸ metric space (M, d)

▸ At time t = 1,2,…

▸  revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]



▸ metric space (M, d)

▸ At time t = 1,2,…

▸  revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

 
Examples: 
paging, -server, dynamic power management, convex 
body/function chasing, self-adjusting BSTs, …

k

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]
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▸ metric space (M, d)

▸ At time t = 1,2,…

▸  revealedct : M → ℝ+ ∪ {∞}

▸ Suggestions ϕ1t, ϕ2t, …, ϕkt ∈ M

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

 
Algo  is -competitive against  if 
                              

A ρ B
costA ≤ ρ ⋅ costB + const

Metrical Task Systems (MTS) with multiple predictors



Theorem: Against best dynamic combination, can be 
-competitive.

Θ(k2)



Theorem: Against best dynamic combination, can be 
-competitive.

Θ(k2)

Theorem: Against best dynamic combination with limited 
switches, can be -competitive.(1 + ϵ)



Theorem: Against best dynamic combination, can be 
-competitive.


Theorem: Against best dynamic combination with limited 
switches, can be -competitive, even if only one 
suggestion queried per time step.

Θ(k2)

(1 + ϵ)



Theorem: Against best dynamic combination, can be 
-competitive.


Theorem: Against best dynamic combination with limited 
switches, can be -competitive, even if only one 
suggestion queried per time step.

Θ(k2)

(1 + ϵ)

 

if all suggestions queried

O ( ϵ2

log k
⋅

DYN
diam )  

if one suggestion queried per time step

Õ ( ϵ3

k
⋅

DYN
diam )
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JOINT WORK WITH


SÉBASTIEN BUBECK (MICROSOFT RESEARCH)

YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

Shortest Paths without a Map,

but with an Entropic Regularizer



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s
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▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When  reached:   and edges between  revealedLi Li+1 Li, Li+1

▸ cost = distance traveled until reaching t

▸ only parameter:  k := maxi |Li |

Layered Graph Traversal (LGT)

s t

[Papadimitriou,Yannakakis 1989: 
“Shortest Paths without a Map”]



▸  server in metric space 


▸ At time 


▸ Set  requested, 


▸ Server must move to 


▸ Cost = distance moved


Theorem [Fiat et al. ’91]: This problem is equivalent to LGT

1 M

t = 1,2,…

St ⊂ M |St | ≤ k

St

Chasing Small Sets (aka Metrical Service Systems)



Simplest Version: Cow Path Problem
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Simplest Version: Cow Path Problem

12 48

s



Old Bounds:

▸ deterministic: -competitive [Burley ’96, Fiat 
et al. ’91]

O(k ⋅ 2k) ∩ Ω(2k)

▸ randomized:  [Ramesh ’93]O(k13) ∩ Ω(k2/log1+ϵ k)

▸ stuck since 1993

State of the Art:



Old Bounds:

▸ deterministic: -competitive [Burley ’96, Fiat 
et al. ’91]

O(k ⋅ 2k) ∩ Ω(2k)

▸ randomized:  [Ramesh ’93]O(k13) ∩ Ω(k2/log1+ϵ k)

▸ stuck since 1993

New tight randomized bound:  
[Bubeck-Coester-Rabani 22,23]

Θ(k2)

State of the Art:



▸ Binary tree evolves over time: 
 
 
 
 
 
 
 
 
 

▸ Agent must stay at leaves


▸ Cost = distance moved by agent

Evolving Tree Game (ETG)

Fork

Grow

Delete
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▸ Wlog layered graph is a tree [Fiat et al. ’91] 
                           (build online the tree of shortest paths from )s

s

Reduction: LGT  ETG≤

Observation: depth  #leaves ≤ = |Li | ≤ k

LGT:

ETG:



Algorithm



▸ Fork: Do nothing (almost)
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▸ Fork: Do nothing (almost)


▸ Growth: 
 
 
 
 

▸ Deletion:

Algorithm

x′￼u = −
2xu

w̃u
w̃′￼u +

xu + δu

w̃u
(λp(u) − λu)

probability mass 
in subtree of 
xu =

u

weight of edge w̃u =
2k − 1

2k − depth(u)
⋅ (u, p(u))

chosen s.t. x is well-defined probability

δu =
1

2depth(u)



▸ Fork: Do nothing (almost)


▸ Growth: 
 
 
 
 

▸ Deletion:

Algorithm

x′￼u = −
2xu

w̃u
w̃′￼u +

xu + δu

w̃u
(λp(u) − λu)

probability mass 
in subtree of 
xu =

u

weight of edge w̃u =
2k − 1

2k − depth(u)
⋅ (u, p(u))

chosen s.t. x is well-defined probability

δu =
1

2depth(u)

wu → ∞

xu → 0



For a suitable potential function , for any step (discrete or 
continuous) we have

P

Analysis

Δcost + ΔP ≤ O(k2) ⋅ Δopt
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For a suitable potential function , for any step (discrete or 
continuous) we have

P

Analysis

Δcost + ΔP ≤ O(k2) ⋅ Δopt

P := 2∑
u

w̃u (4kyu log
1 + δu

xu + δu
+ (2k − depth(u))xu)

WHERE IS THIS ALL COMING FROM???



▸ metric space , 


▸ At time 


▸  revealed


▸ Choose server position 


▸ Pay 

(M, d) |M | = n

t = 1,2,…

ct : M → ℝ+ ∪ {∞}

pt ∈ M

d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]



K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

Randomized MTS on Trees r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]



K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

▸ Cost vectors  (supported on leaves) appear in 
continuous time

c(t) ∈ ℝV
+

▸ Algo maintains x(t) ∈ K

▸ Pays

Randomized MTS on Trees

∫ (⟨c(t), x(t)⟩ + ⟨w, |x′￼(t) |⟩) dt

r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]



K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

▸ Cost vectors  (supported on leaves) appear in 
continuous time

c(t) ∈ ℝV
+

▸ Algo maintains x(t) ∈ K

▸ Pays

Randomized MTS on Trees

∫ (⟨c(t), x(t)⟩ + ⟨w, |x′￼(t) |⟩) dt

r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

Algorithm:
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▸ D(t) := Φ(y(t)) − Φ(x(t)) − ⟨∇Φ(x(t)), y(t) − x(t)⟩

▸ Short calculation  
 

         

⟹

⟨c(t), x(t)⟩ + D′￼(t) ≤ ⟨c(t), y(t)⟩ + LipΦ ⋅ ⟨w, |y′￼(t) |⟩

Choosing  for fixed  

[Bubeck,Cohen,Lee,Lee ’19] show

Φ(x) = ∑
u

wu(xu + δu)log(xu + δu) δ ∈ K

                 ⟨w, (x′￼(t))+⟩ + Ψ′￼(t) ≤ depth ⋅ ⟨c(t), x(t) + δ⟩

where Ψ(t) := − ∑
u

depth(u) ⋅ wuxu(t)
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         LipΦ = O (log
1

minu δu ) = O(log(# leaves))

This  can increase/decrease due to Fork/Delete 
        bad effects on 

δu
⟹ D

Solution: δu := 2

Then  and  only increases  good effects on δ ∈ K δu ⟹ D

LipΦ = O (log
1

minu δu ) = O(depth)

Tree topology (and hence ) evolves  cannot choose fixed K ⇝ δ ∈ K

−depth(u)
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Solution: Essentially, replace


   and 


by


   and 


Now increase of  due to growth of  can be charged to OPT.

D = ∑
u

w̃u ((yu + δu)log
yu + δu

xu + δu
+ xu − yu) c(t) = w′￼(t)

D = ∑
u

w̃u (2yu log
yu + δu

xu + δu
+ xu − yu) c(t) =

2x
x + δ

w′￼(t)

D w

When  grows,  increasesw D



Algorithm for Evolving Tree Game

Tree topology (and hence ) evolves  cannot choose fixed K ⇝ δ ∈ K

When depth  decreases,  increases(u) Ψ

When  grows,  increasesw D



▸ Mirror descent works even in evolving metric spaces


▸ -competitiveness for MTS becomes:


▸  for evolving tree game


▸  for LGT and chasing small sets

O(depth ⋅ log n)

O(depth2)

O(k2)



JOINT WORK WITH


SÉBASTIEN BUBECK (MICROSOFT RESEARCH)

YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

The Randomized k-Server Conjecture 
is *****!
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▸ At time t = 1,2,…

▸ point  requestedrt ∈ M

▸ A server must move to rt
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▸ point  requestedrt ∈ M
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▸ Cost = distance traveled

k-server problem

k-server often called “holy grail of competitive analysis”



-server conjecture:  -competitive deterministic algorithmk ∃ k



State of the art:


▸  [Manasse,McGeoch,Sleator 88]


▸  [Koutsoupias,Papadimitriou 94]
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≥ k

≤ 2k − 1

= k

-server conjecture:  -competitive deterministic algorithmk ∃ k



State of the art:


▸  [Manasse,McGeoch,Sleator 88]


▸  [Koutsoupias,Papadimitriou 94]


▸  in special cases

≥ k

≤ 2k − 1

= k

-server conjecture:  -competitive deterministic algorithmk ∃ k

Randomized -server conjecture:k -comp. rand. algoO(log k)∃



State of the art:


▸  [Manasse,McGeoch,Sleator 88]


▸  [Koutsoupias,Papadimitriou 94]


▸  in special cases

≥ k

≤ 2k − 1

= k

-server conjecture:  -competitive deterministic algorithmk ∃ k

Randomized -server conjecture:k
State of the art:


▸  [Bartal,Bollobas,Mendel 01, 
                                     Bartal,Linial,Mendel,Naor 03]


▸  in -point metrics [Bubeck,Cohen,Lee,Lee,Madry 18] 
 where =aspect ratio [Bubeck,Cohen,Lee,Lee,Madry 18]


▸  in special cases

Ω(log k / log log k)

O(log2 k log n) n
O(log3 k log Δ) Δ

Θ(log k)

-comp. rand. algoO(log k)∃
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o -competitive randomized algorithmO(log k)n∃

More precisely:

Theorem: Comp. ratio is  in some metrics of  
points

Ω(log2 k) k + 1

Also tight universal lower bound:

Theorem: Comp. ratio is  in all metrics of  pointsΩ(log k) > k

Theorem [Bubeck,Coester,Rabani 23]:



▸ metric space , (M, d) |M | = n

▸ 1 server, initially at p0 ∈ M

▸ At time t = 1,2,…

▸  revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)
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▸ metric space , (M, d) |M | = n

▸ 1 server, initially at p0 ∈ M

▸ At time t = 1,2,…

▸  revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

MTS with               -server problemct : M → {0,∞} ≡ (n − 1)

Corollary: Comp. ratio of MTS is  in some metrics     (tight) 
                                                            in all metrics             (tight)

Ω(log2 n)
Ω(log n)

Metrical Task Systems (MTS)
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Previous best existential LB was : 
[Borodin,Linial,Saks 87]


▸ metric space  with 


▸         for  unif. at random


▸ 


▸

Ω(log n)

(M, d) d(x, y) = 1x≠y

ct(p) := {∞ p = rt

0 p ≠ rt
rt ∈ M

𝔼[cost] = #requests / n

𝔼[opt] = #requests / Ω(n log n)

∞

00

0
0

00

0



Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.
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Metric space is similar to diamond graph

M1 = M2 = M3 =

Mw+1 =
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Proof of  Ω (( log n
log log n )
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cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Need  ,  so  Rw+1 ≤
cost
opt

Rw+1 ≤ Rw +
Rw

3

            E.g.  Rw =
w2

81
= Ω(w2)

n = |Mw+1 | ≤ 6Rw |Mw | ≤
w

∏
i=1

6Ri ≤
w

∏
i=1

i2 = (w!)2

= 2O(w log w)

⟹ Rw = Ω(w2) = Ω (( log n
log log n )

2

)
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▸ Try same with smaller : use only 6 copies ofn

▸ n = |Mw | ≤ 6w

▸ Problem:

▸ want to flip many coins, but only 3 copies per branch

▸ Idea:

▸ issue recursive request sequence “chunk by chunk”

▸ need refined inductive hypothesis

Removing log log
Mw

Mw



Key Lemma: rand. sequence of chunks  and 
rand. variables  s.t.:

∃ ρ1ρ2…ρm
c1, …, cm

▸ 𝔼 [cost(ρi) ∣ ρ1…ρi−1] ≥ ci

▸ 𝔼 [∑ ci] = Ω(w2) ⋅ opt

▸ ci ≈ opt = diam(Mw)



Key Lemma: rand. sequence of chunks  and 
rand. variables  s.t.:

∃ ρ1ρ2…ρm
c1, …, cm

▸ 𝔼 [cost(ρi) ∣ ρ1…ρi−1] ≥ ci

▸ 𝔼 [∑ ci] = Ω(w2) ⋅ opt

▸ ci ≈ opt = diam(Mw)

Proof idea:

▸ biased coins s.t.  is martingale"cost at top − cost at bottom"

▸ martingale CLT/Berry-Esseen yields gap ±w⋅opt

▸ combine small chunks s.t. ci ≈ opt



▸ Improved LBs for k-taxi, distributed paging, metric allocation


▸ Similar construction   for layered graph traversal⟹ Ω(k2)

Implications for other Problems



▸ Competitive ratio of MTS is

▸  on easiest metricsΘ(log n)

▸  on hardest metricsΘ(log2 n)

▸ Competitive ratio of k-server is

▸  on easiest metrics with  pointsΘ(log k) ≥ k + 1

▸  on hardest metrics with  pointsΘ(log2 k) = k + 1

▸  on hardest 
metrics
Ω(log2 k) ∩ O (min{log2 k log n, log3 k log Δ, k})
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▸ Competitive ratio of MTS is

▸  on easiest metricsΘ(log n)

▸  on hardest metricsΘ(log2 n)

▸ Competitive ratio of k-server is

▸  on easiest metrics with  pointsΘ(log k) ≥ k + 1

▸  on hardest metrics with  pointsΘ(log2 k) = k + 1

▸  on hardest 
metrics
Ω(log2 k) ∩ O (min{log2 k log n, log3 k log Δ, k})

▸ Take-aways: diamond graphs are cool, consider recursion 
chunk by chunk, look for proof ideas in old poems

Conclusion


