
OPTIMIZATION WITH
PREDICTIONS

AND/OR ONLINE
CHRISTIAN COESTER (OXFORD)

Traditional Algorithms

Worst-case guarantees
Pessimistic?

Machine learned predictions

Often very powerful
No guarantee

Traditional Algorithms

Worst-case guarantees
Pessimistic?

Machine learned predictions

Often very powerful
No guarantee

Real life worst case, often predictable
(e.g., solve similar instances repeatedly)

≠

Traditional Algorithms

Worst-case guarantees
Pessimistic?

Machine learned predictions

Often very powerful
No guarantee

Algorithms with predictions

Goal: Good predictions much better performance
 Bad predictions same worst-case guarantee

⟹
⟹

Real life worst case, often predictable
(e.g., solve similar instances repeatedly)

≠

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction of position ̂p p

̂p p

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction of position ̂p p

̂p p

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction of position ̂p p

̂p p

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction of position ̂p p

̂p p

[Lykouris,Vassilvitskii 18]Example: Binary Search

2 5 7 10 16 23 28 36 37 42 47 58 60 67 73 80 83

[Kraska et al. 18]

Does 67 appear in array?

▸ Binary search: Time O(log n)

▸ Given prediction of position ̂p p

▸ Time , where O(log η) η = | ̂p − p |

̂p p

Growing rapidly in last 5 years

▸ Caching

▸ Scheduling/Load Balancing

▸ Rent or buy problems

▸ Metrical Task Systems

▸ Matching

▸ Data Structures

▸ …

Improve competitive, approx. ratio, running time, space, …

Algorithms with Predictions (aka Learning-Augmented Algorithms)

Sorting with Predictions

JOINT WORK WITH XINGJIAN BAI (OXFORD)

Task: Sort wrt. <

Setting 1: Receive prediction of positions in sorted list

Setting 2: Access to quick-and-dirty comparisons

a1, a2, …, an

Sorting with Predictions [Bai,Coester 23]

Input:
 prediction of ’s position in sorted list

a1, a2, …, an
̂p(i) ai

Sorting with Positional Predictions

Input:
 prediction of ’s position in sorted list

a1, a2, …, an
̂p(i) ai

Similar: Adaptive Sorting
We consider element-wise error fine-grained guarantees⇝

Sorting with Positional Predictions

Input:
 prediction of ’s position in sorted list

a1, a2, …, an
̂p(i) ai

Similar: Adaptive Sorting
We consider element-wise error fine-grained guarantees⇝

Notation: true position of in sorted list

p(i) = ai
ηi = | ̂p(i) − p(i) |

Sorting with Positional Predictions

Input:
 prediction of ’s position in sorted list

a1, a2, …, an
̂p(i) ai

Similar: Adaptive Sorting
We consider element-wise error fine-grained guarantees⇝

Notation: true position of in sorted list

p(i) = ai
ηi = | ̂p(i) − p(i) |

Theorem: algorithm that sorts in time ∃ O (∑
n

i=1
log(ηi + 2))

Sorting with Positional Predictions

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67 491

621364 914

398 649

281 711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67 491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67 491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67 491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67 491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82 510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510208 813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281 711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

385

90

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398 649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621364 914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

82510 208 813 67 491 621 364 914 398 649 281 711 385 90 894 625

29 4 15 2 9 12 7 17 7 12 5 13 7 2 17 12

ai

̂p(i)

First algorithm:

1. Bucket sort according to

2. From left to right: Insert into sorted list
 Use binary search with predictions to find insert position

̂p

82

510

208

813

67

491

621

364

914

398

649

281

711

38590

894

625

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

ηi ηi−1

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ ∑i
O(log ηi) + ∑i

log (̂p(i) − ̂p(i − 1) + 1)

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

ηi ηi−1

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ ∑i
O(log ηi) + ∑i

log (̂p(i) − ̂p(i − 1) + 1)

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

ηi ηi−1

≤ ̂p(i)− ̂p(i−1)

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ ∑i
O(log ηi) + ∑i

log (̂p(i) − ̂p(i − 1) + 1)

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

ηi ηi−1

≤ ̂p(i)− ̂p(i−1)

≤ ̂p(n)− ̂p(1) ≤ n

WLOG: ̂p(1) ≤ ̂p(2) ≤ … ≤ ̂p(n)

#comparisons = ∑i
log (|p(i) − p(i − 1) | + 1)

≤ ∑i
O(log ηi) + ∑i

log (̂p(i) − ̂p(i − 1) + 1)

 ≤ O (∑
n

i=1
log(ηi + 2))

≤ |p(i)− ̂p(i)| + ̂p(i)− ̂p(i−1) + | ̂p(i−1)−p(i−1)|

ηi ηi−1

≤ ̂p(i)− ̂p(i−1)

≤ ̂p(n)− ̂p(1) ≤ n

But shifting subarrays slow

But shifting subarrays slow

Better: Replace array by BBST to get time O (∑i
log(ηi + 2))

More involved algorithm (see our paper [Bai,Coester 23])

 comparisons, where

⟹ O (∑i
log(η̃i + 2))

η̃i := min {#{j : aj < ai, ̂p(j) ≥ ̂p(i)},
#{j : aj > ai, ̂p(j) ≤ ̂p(i)}}

Input:
 slow-and-clean comparator <
 quick-and-dirty comparator

a1, a2, …, an

<̂

Error:

ηi := #{j : (aj < ai) ≠ (aj <̂ ai)}

Sorting with Dirty and Clean Comparisons

Input:
 slow-and-clean comparator <
 quick-and-dirty comparator

a1, a2, …, an

<̂

Error:

ηi := #{j : (aj < ai) ≠ (aj <̂ ai)}

Theorem: Can sort with dirty comparisons
 and clean comparisons

O(n log n)
O (∑

n

i=1
log(ηi + 2))

Sorting with Dirty and Clean Comparisons

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7 7 <̂ 15

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7 7 <̂ 15

4 <̂ 7

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7 7 <̂ 15

4 <̂ 7

8 <̂ 7

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7 7 <̂ 15

4 <̂ 7

8 <̂ 7

9 <̂ 7

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

[8,15]

[9,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

[8,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

O(log n)

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7

O(log n)

O(log ηi)

Experiments
Sorting countries by population (n=261)

Predictions: ranking years agox

Experiments
Classes of consecutive items (n=1,000,000)

Predictions: random position within class

Experiments

Repeatedly add to , for random (n=1,000,000)±1 ̂p(i) i

Experiments

Fraction of items damaged (n=100,000)

 random if an item damaged, otherwise correct

r

<̂

Experiments

Fraction of items damaged (n=100,000)

 random if both items damaged, otherwise correct

r

<̂

Roadmap

▸ Sorting with Predictions

▸ Weighted Paging with Predictions (today + tomorrow)

▸ Mixing Multiple Predictions (tomorrow or Thursday)

▸ Shortest Paths without a Map (Thursday)

▸ Randomized k-Server Conjecture (Thursday)

Learning-Augmented Weighted Paging

JOINT WORK WITH

NIKHIL BANSAL (UNIVERSITY OF MICHIGAN)
RAVI KUMAR (GOOGLE)

MANISH PUROHIT (GOOGLE)
ERIK VEE (GOOGLE)

▸ cache can hold pagesk

The paging problem (aka caching)

▸ cache can hold pagesk

▸ at time t = 1,2,…

▸ page requestedpt

The paging problem (aka caching)

▸ cache can hold pagesk

▸ at time t = 1,2,…

▸ page requestedpt

The paging problem (aka caching)

Request:

▸ cache can hold pagesk

▸ at time t = 1,2,…

▸ page requestedpt

▸ if cache (“cache miss”)pt ∉

▸ evict a page from cache

▸ fetch into cachept

▸ pay 1

The paging problem (aka caching)

Request:

▸ cache can hold pagesk

▸ at time t = 1,2,…

▸ page requestedpt

▸ if cache (“cache miss”)pt ∉

▸ evict a page from cache

▸ fetch into cachept

▸ pay 1

The paging problem (aka caching)

Request:

▸ cache can hold pagesk

▸ at time t = 1,2,…

▸ page requestedpt

▸ if cache (“cache miss”)pt ∉

▸ evict a page from cache

▸ fetch into cachept

▸ pay 1

The paging problem (aka caching)

Request:

▸ cache can hold pages

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

t = 1,2,…

pt

pt ∉

pt

1

The paging problem (aka caching)

Request:

▸ cache can hold pages

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

t = 1,2,…

pt

pt ∉

pt

1

The paging problem (aka caching)

Request:

▸ cache can hold pages

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

t = 1,2,…

pt

pt ∉

pt

1

The paging problem (aka caching)

Request:

▸ cache can hold pages

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

t = 1,2,…

pt

pt ∉

pt

1

The paging problem (aka caching)

Request:

▸ cache can hold pages

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

t = 1,2,…

pt

pt ∉

pt

1

The paging problem (aka caching)

Request:

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

[Belady 66]

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

[Belady 66]

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Proof: Let
#pages in FIF-cache in pos in next-request ordering

—————— OPT-cache ——————————————————————————
n(s) := ≤ s
n*(s) :=

[Belady 66]

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Proof: Let
#pages in FIF-cache in pos in next-request ordering

—————— OPT-cache ——————————————————————————
n(s) := ≤ s
n*(s) :=

Φ := max
s

n*(s) − n(s)

[Belady 66]

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Proof: Let
#pages in FIF-cache in pos in next-request ordering

—————— OPT-cache ——————————————————————————
n(s) := ≤ s
n*(s) :=

Φ := max
s

n*(s) − n(s)

Claim: Δcost + ΔΦ ≤ ΔcostFIF OPT

[Belady 66]

Algorithm FIF
On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Proof: Let
#pages in FIF-cache in pos in next-request ordering

—————— OPT-cache ——————————————————————————
n(s) := ≤ s
n*(s) :=

Φ := max
s

n*(s) − n(s)

Claim: Δcost + ΔΦ ≤ ΔcostFIF OPT

[Belady 66]

Algorithm FIF [Belady 66]

On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Requests revealed one by one

Algorithm -competitive if
 cost opt + const

ρ
≤ ρ ⋅

Online paging

Algorithm FIF [Belady 66]

On cache miss, evict page whose next request is
farthest in future.

Theorem: FIF is optimal.

Requests revealed one by one

Algorithm -competitive if
 cost opt + const

ρ
≤ ρ ⋅

Competitive ratio of paging: deterministically [ST85]
 randomized [FKLMSY91]

k
Θ(log k)

Online paging

Learning-Augmented Paging [Lykouris & Vassilvitskii 18]

At time t, page requested and additional input:pt

predicted time when next requestedτt := pt

Learning-Augmented Paging [Lykouris & Vassilvitskii 18]

At time t, page requested and additional input:pt

predicted time when next requestedτt := pt

[LV 18]: -competitive, where

O min { η
opt

, log k}
η := ∑

t

|τt − at |

prediction truth

Learning-Augmented Paging [Lykouris & Vassilvitskii 18]

At time t, page requested and additional input:pt

predicted time when next requestedτt := pt

[LV 18]: -competitive, where

O min { η
opt

, log k}
η := ∑

t

|τt − at |

[Rohatgi 20, Wei 20]: Improved dependence on η

prediction truth

▸ cache can hold pages

▸ Page has weight

▸ at time

▸ page requested

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache

▸ pay

k

p wp > 0

t = 1,2,…

pt

pt ∉

pt

wpt

Weighted Paging

▸ Stepping stone towards -server

▸ Same comp. ratio as paging (determ., rand.), but
techniques more challenging

k

k Θ(log k)

Weighted Paging

▸ Stepping stone towards -server

▸ Same comp. ratio as paging (determ., rand.), but
techniques more challenging

k

k Θ(log k)

Weighted Paging

FIF with weights?

▸ Stepping stone towards -server

▸ Same comp. ratio as paging (determ., rand.), but
techniques more challenging

k

k Θ(log k)

Weighted Paging

FIF with weights?

Weighted paging with predictions?

Bad News
 deterministic and randomized even with

accurate predictions of next request times [JPS20,ACEPS20]
Ω(k) Ω(log k)

Bad News
 deterministic and randomized even with

accurate predictions of next request times [JPS20,ACEPS20]
Ω(k) Ω(log k)

[JPS20]: Prediction of entire request sequence until each page
requested again

[ACEPS20]: Prediction of optimal actions

Learning-Augmented Weighted Paging
 deterministic and randomized with

accurate predictions of next request times [JPS20,ACEPS20]

where #weight classes

Ω(l) Ω(log l)

l =

Learning-Augmented Weighted Paging
 deterministic and randomized with

accurate predictions of next request times [JPS20,ACEPS20]

where #weight classes

Ω(l) Ω(log l)

l =

[Bansal,Coester,Kumar,Purohit,Vee 22]:

Theorem: These bounds are tight.

▸ cache can hold pages

▸ at time

▸ page requested

▸ prediction of next time when requested again

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache for cost

Parameter: #weight classes

k

t = 1,2,…

pt

τt pt

pt ∉

pt wpt

l =

Recap: Learning-Augmented Weighted Paging

▸ cache can hold pages

▸ at time

▸ page requested

▸ prediction of next time when requested again

▸ if cache (“cache miss”)

▸ evict a page from cache

▸ fetch into cache for cost

Parameter: #weight classes

k

t = 1,2,…

pt

τt pt

pt ∉

pt wpt

l =

Recap: Learning-Augmented Weighted Paging

≤ O (log
maxp wp

minp wp)

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions accurate, there is

▸ -competitive deterministic algorithm

▸ -competitive randomized algorithm

l

O(log l)

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions unreliable, there is

▸ -competitive deterministic algorithmO(min {l +
l ⋅ ϵ
opt

, k})

▸ -competitive randomized

algorithm

O(min {log l +
l ⋅ ϵ
opt

, log k})

where #surprises in weight class iϵ =
l

∑
i=1

wi ⋅

Theorem: [Bansal,Coester,Kumar,Purohit,Vee 22]

If predictions unreliable, there is

▸ -competitive deterministic algorithmO(min {l +
l ⋅ ϵ
opt

, k})

▸ -competitive randomized

algorithm

O(min {log l +
l ⋅ ϵ
opt

, log k})

where #surprises in weight class iϵ =
l

∑
i=1

wi ⋅

 ≤ 2∑
t

wpt
⋅ |τt − at |

Assume now accurate predictions

Assume now accurate predictions

(Extension to inaccurate predictions fairly simple)

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 3 x2 = 2 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 3 x2 = 2 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

x1 = 4 x2 = 1 x3 = 3

k = 8
l = 3

Algorithm consists of global strategy and local strategy

How many pages from
each weight class i?

xi Which pages?xi

 for some

Global: until

 Then , where class of requested page

Local: FIF

xi := ⌈x̃i⌉ x̃i ≥ 0

x̃′ i = −
1
wi ∑

i

⌈x̃i⌉ ≤ k − 1

x̃r := x̃r + 1 r =

Deterministic Algorithm:

-competitive randomized algorithmO(log l)

Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Page ranks

Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Page ranks

Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks

Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Proof: Induction on .

t ⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks

Consider sub-instance of single weight class

Let pages in cache of FIF at time t if cache size Cm
t = m

Lemma: C1
t ⊂ C2

t ⊂ C3
t ⊂ …∀t

Proof: Induction on .

t

Definition: Page has rank at time if p m t Cm
t ∖Cm−1

t = {p}

⏟
C1

it

C2
it⏞

C3
it

C4
it

Page ranks

Lemma: Let be pages sorted by rank at time .p1, p2, … t
Change of ranks

Lemma: Let be pages sorted by rank at time .p1, p2, … t

Let be requested next.pm0

Change of ranks

Lemma: Let be pages sorted by rank at time .p1, p2, … t

Let be requested next.pm0

Let s.t.m0 > m1 > m2 > …

 is farthest-in-future among pmi+1
Cmi−1

t = {p1, p2, …, pmi−1}

Change of ranks

Lemma: Let be pages sorted by rank at time .p1, p2, … t

Let be requested next.pm0

Let s.t.m0 > m1 > m2 > …

 is farthest-in-future among pmi+1
Cmi−1

t = {p1, p2, …, pmi−1}

Then at time t + 1:

▸ has rank pm0
1

▸ has rank pmi
mi−1

▸ other ranks unchanged

Change of ranks

From class , have pages with ranks fully in cache,i ≤ ⌊xi⌋

 page with rank fractionally.⌈xi⌉

Local strategy

From class , have pages with ranks fully in cache,i ≤ ⌊xi⌋

 page with rank fractionally.⌈xi⌉

Concisely: cache =
l

⋃
i=1

Cxi
it

Local strategy

From class , have pages with ranks fully in cache,i ≤ ⌊xi⌋

 page with rank fractionally.⌈xi⌉

Concisely: cache =
l

⋃
i=1

Cxi
it

Lemma: This is best local strategy, up to factor 3.

Local strategy

From class , have pages with ranks fully in cache,i ≤ ⌊xi⌋

 page with rank fractionally.⌈xi⌉

Concisely: cache =
l

⋃
i=1

Cxi
it

Lemma: This is best local strategy, up to factor 3.

Proof idea: Use potential

 whereΦ =
l

∑
i=1

wi ⋅ max
s (n*i (s) − ni(s))

#pages in cache in pos in next-request ordering
 of class-i-subinstance
ni(s) := ≤ s

 ….. in optimal cache ……n*i (s) :=

Local strategy

online cache =
l

⋃
i=1

Cxi(t)
it

offline cache for unknown =
l

⋃
i=1

Cyi(t)
it yi(t)

online cache =
l

⋃
i=1

Cxi(t)
it

offline cache for unknown =
l

⋃
i=1

Cyi(t)
it yi(t)

When rank- -page of class requested:r i

 online cache miss iff r > xi

 offline cache miss iff r > yi

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸ revealed(it, rt) ∈ [l] × ℕ

▸ Algo chooses x(t) ∈ Δ

▸ Pay

 where

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

Global strategy problem: Geometric view

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸ revealed(it, rt) ∈ [l] × ℕ

▸ Algo chooses x(t) ∈ Δ

▸ Pay

 where

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

HOWEVER: This problem has lower bound!Ω(l)

Global strategy problem: Geometric view

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Repeat property

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

 possible2 3 4 5 6 2 3 2 4 5 3 6

Repeat property

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

 possible2 3 4 5 6 2 3 2 4 5 3 6

Repeat property

 2 3 4 5 6 2 5

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

 possible2 3 4 5 6 2 3 2 4 5 3 6

Repeat property

 2 3 4 5 6 2 5

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

 possible2 3 4 5 6 2 3 2 4 5 3 6

Repeat property

 2 3 4 5 6 2 5

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

 possible2 3 4 5 6 2 3 2 4 5 3 6

 (unless predictions erroneous)

Repeat property

impossible

Lemma: Between two requests to rank of class ,
all ranks are requested.

Proof:

r i
2,3,…, r − 1

Repeat property

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Repeat property

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Let last time when identity of changest ∈ [t1, t2 − 1] pr(t)

Repeat property

rank pager

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Let last time when identity of changest ∈ [t1, t2 − 1] pr(t)

 is farthest in future among ⇝ pr(t) p2(t), …, pr(t)

Repeat property

rank pager

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Let last time when identity of changest ∈ [t1, t2 − 1] pr(t)

 is farthest in future among ⇝ pr(t) p2(t), …, pr(t)

In particular: due to be requested earlier than p′ r(t) pr(t)

Repeat property

rank pager

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Let last time when identity of changest ∈ [t1, t2 − 1] pr(t)

 is farthest in future among ⇝ pr(t) p2(t), …, pr(t)

In particular: due to be requested earlier than p′ r(t) pr(t)

This remains true until time — Contradiction.t2

Repeat property

rank pager

Lemma: Between two requests to rank of class ,
all ranks are requested.

r i
2,3,…, r − 1

Proof: Suppose requested at times and some
 not requested in between.

r t1 < t2
r′ ∈ {2,…, r − 1}

Let last time when identity of changest ∈ [t1, t2 − 1] pr(t)

 is farthest in future among ⇝ pr(t) p2(t), …, pr(t)

In particular: due to be requested earlier than p′ r(t) pr(t)

This remains true until time — Contradiction.t2

Repeat property

rank pager

At time

▸ arrives

▸ Algo chooses

▸ Pay

 where

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t = 1,2,…

(it, rt) ∈ [l] × ℕ

x(t) ∈ Δ

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

Global strategy problem: Geometric view

At time

▸ arrives s.t. all
arrived since previous arrival of

▸ Algo chooses

▸ Pay

 where

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t = 1,2,…

(it, rt) ∈ [l] × ℕ (it,2), (it,3), …, (it, rt − 1)
(it, rt)

x(t) ∈ Δ

wit ⋅ crt
(xit) + ∑i∈[l]

wi |xi(t) − xi(t − 1) |

cr(z) :=
1 z ≤ r − 1
0 z ≥ r
linear z ∈ [r − 1,r]

Global strategy problem: Geometric view

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸ Convex non-increasing arrives at ct : [0,k] → ℝ+ it ∈ [l]

▸ Algo chooses x(t) ∈ Δ

▸ Pay wit ⋅ ct(xit) + ∑i∈[l]
wi |xi(t) − xi(t − 1) |

A similar problem

0 k

ct(xi)

xi

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
At time t = 1,2,…

▸ Convex non-increasing arrives at ct : [0,k] → ℝ+ it ∈ [l]

▸ Algo chooses x(t) ∈ Δ

▸ Pay wit ⋅ ct(xit) + ∑i∈[l]
wi |xi(t) − xi(t − 1) |

This problem is -competitive! [Bansal,Coester 22]Θ(log l)

A similar problem

0 k

ct(xi)

xi

At time

▸ Convex non-increasing arrives at

▸ Algo chooses

▸ Pay

This problem is -competitive! [Bansal,Coester 22]

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t ∈ [0,∞)

ct : [0,k] → ℝ+ it ∈ [l]

x(t) ∈ Δ

∫
∞

0 (wit ⋅ ct(xit) + ∑i∈[l]
wi |x′ i(t) |) dt

Θ(log l)

A similar problem

0 k

ct(xi)

xi

At time

▸ Convex non-increasing arrives at

▸ Algo chooses

▸ Pay

This problem is -competitive! [Bansal,Coester 22]

Δ := {x ∈ ℝl
+ ∑

i

xi = k}
t ∈ [0,∞)

ct : [0,k] → ℝ+ it ∈ [l]

x(t) ∈ Δ

∫
∞

0 (wit + ∑i∈[l]
wi |x′ i(t) |) dt

Θ(log l)

A similar problem

0 k

ct(xi)

xi

1{

For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

 x′ i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]

For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

 x′ i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

willingness to decrease xi

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]

For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

 x′ i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

Algorithm

 s.t. B > 0 ∑i
x′ i(t) = 0

willingness to decrease xi

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]

For each , auxiliary variable i ∈ [l] μi ≥ 0

At time t ∈ [0,∞)

 x′ i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

 μ′ i(t) =

μi

∑j μj
+ 1

l

B ⋅ wi
− 2 ⋅ 1i=it ∧ wi<μi⋅|c′ t(xi)|

Algorithm

 s.t. B > 0 ∑i
x′ i(t) = 0

willingness to decrease xi

0 k

ct(xi)

xi

1{

 [Bansal,Coester 22]

Cost function only amortized convex

Back to weighted paging

Cost function only amortized convex

▸ For , maintain set

 Idea: recently requested ranks of class i

i ∈ [l] Si ⊂ [xit, ∞)

Si ≈

Back to weighted paging

Cost function only amortized convex

▸ For , maintain set

 Idea: recently requested ranks of class i

i ∈ [l] Si ⊂ [xit, ∞)

Si ≈

▸ Set and update such that

μi := |Si | Si

μ′ i(t) =

μi

∑j μj
+ 1

l

B ⋅ wi
− 2 ⋅ 1i=it ∧ p∈Si

Back to weighted paging

Cost function only amortized convex

▸ For , maintain set

 Idea: recently requested ranks of class i

i ∈ [l] Si ⊂ [xit, ∞)

Si ≈

▸ Set and update such that

μi := |Si | Si

μ′ i(t) =

μi

∑j μj
+ 1

l

B ⋅ wi
− 2 ⋅ 1i=it ∧ p∈Si

Back to weighted paging

pointer that moves
continuously through

[rt − 1,rt]

When rank of class requested:

▸ Move pointer at rate from to . Meanwhile:

▸ If

▸ : Add to points passed by

▸ Shrink at rate from left & rate from right

▸ If Grow in at rate

rt it

p 8 rt − 1 rt

p > xit

x′ i(t) = 1i=it −

μi

∑j μj
+ 1

l

B ⋅ wi

∀i ≠ it Si xi

Sit x′ it 1

p ∉ Sit : Sit (rt − 1,p] 2

Full algorithm (global strategy)

Analysis uses potential , where

10D + 2M + 5C + 4S

D = ∑i
wi (μi + [xi − yi]+) log

(1 + 1
l) (μi + [xi − yi]+)

μi + 1
l (μi + [xi − yi]+)

M = ∑i
wi [μi − 2(yi − xi)]+

C = ∑i
wi ∫Si

| (yi, xi] ∩ Riu |

μi + 1
l (μi + | (yi, xi] ∩ Riu |)

du

S = ∑i
wi (|Si ∩ [yi, ∞) | + [xi − yi]+)

▸ Simpler algorithm/analysis?

▸ -server with next-request time predictions?k

Open problems

Roadmap
▸ Sorting with Predictions

▸ Weighted Paging with Predictions

▸ Mixing Multiple Predictions

▸ Shortest Paths without a Map

▸ Randomized k-Server Conjecture

Mixing Predictions
for Online Metric Algorithms

JOINT WORK WITH

ANTONIOS ANTONIADIS (UNIVERSITY OF TWENTE)
MAREK ELIAS (BOCCONI UNIVERSITY)

ADAM POLAK (MAX PLANCK INSTITUTE FOR INFORMATICS)
BERTRAND SIMON (IN2P3 COMPUTING CENTER / CNRS)

▸ metric space (M, d)

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

▸ metric space (M, d)

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Examples:
paging, -server, dynamic power management, convex
body/function chasing, self-adjusting BSTs, …

k

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

▸ metric space (M, d)

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Suggestions ϕ1t, ϕ2t, …, ϕkt ∈ M

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS) with multiple predictors

▸ metric space (M, d)

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Suggestions ϕ1t, ϕ2t, …, ϕkt ∈ M

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Algo is -competitive against if

A ρ B
costA ≤ ρ ⋅ costB + const

Metrical Task Systems (MTS) with multiple predictors

Theorem: Against best dynamic combination, can be
-competitive.

Θ(k2)

Theorem: Against best dynamic combination, can be
-competitive.

Θ(k2)

Theorem: Against best dynamic combination with limited
switches, can be -competitive.(1 + ϵ)

Theorem: Against best dynamic combination, can be
-competitive.

Theorem: Against best dynamic combination with limited
switches, can be -competitive, even if only one
suggestion queried per time step.

Θ(k2)

(1 + ϵ)

Theorem: Against best dynamic combination, can be
-competitive.

Theorem: Against best dynamic combination with limited
switches, can be -competitive, even if only one
suggestion queried per time step.

Θ(k2)

(1 + ϵ)

if all suggestions queried

O (ϵ2

log k
⋅

DYN
diam)

if one suggestion queried per time step

Õ (ϵ3

k
⋅

DYN
diam)

ϕ11

ϕ21

ϕ31

ϕ41

p0

d(p 0, ϕ
11)

+ c 1(ϕ 11)

d(p0 , ϕ
41) + c1 (ϕ

41)

ϕ11

ϕ21

ϕ31

ϕ41

ϕ12

ϕ22

ϕ32

ϕ42

p0

d(p 0, ϕ
11)

+ c 1(ϕ 11)

d(p0 , ϕ
41) + c1 (ϕ

41)

d(ϕ31, ϕ42) + c2(ϕ42)

ϕ11

ϕ21

ϕ31

ϕ41

ϕ12

ϕ22

ϕ32

ϕ42

ϕ13

ϕ23

ϕ33

ϕ43

p0

d(p 0, ϕ
11)

+ c 1(ϕ 11)

d(p0 , ϕ
41) + c1 (ϕ

41)

d(ϕ31, ϕ42) + c2(ϕ42)

ϕ11

ϕ21

ϕ31

ϕ41

ϕ12

ϕ22

ϕ32

ϕ42

ϕ13

ϕ23

ϕ33

ϕ43

ϕ14

ϕ24

ϕ34

ϕ44

p0

d(p 0, ϕ
11)

+ c 1(ϕ 11)

d(p0 , ϕ
41) + c1 (ϕ

41)

d(ϕ31, ϕ42) + c2(ϕ42)

JOINT WORK WITH

SÉBASTIEN BUBECK (MICROSOFT RESEARCH)
YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

Shortest Paths without a Map,
but with an Entropic Regularizer

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

Layered Graph Traversal (LGT)

s t

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ Vertices in layers L0 = {s}, L1, L2, …, LT = {t}

▸ Weighted edges between adjacent layers

▸ Searcher starts at s

▸ When reached: and edges between revealedLi Li+1 Li, Li+1

▸ cost = distance traveled until reaching t

▸ only parameter: k := maxi |Li |

Layered Graph Traversal (LGT)

s t

[Papadimitriou,Yannakakis 1989:
“Shortest Paths without a Map”]

▸ server in metric space

▸ At time

▸ Set requested,

▸ Server must move to

▸ Cost = distance moved

Theorem [Fiat et al. ’91]: This problem is equivalent to LGT

1 M

t = 1,2,…

St ⊂ M |St | ≤ k

St

Chasing Small Sets (aka Metrical Service Systems)

Simplest Version: Cow Path Problem

Simplest Version: Cow Path Problem

12 48

Doubling strategy 9-competitive (best deterministic algo)

Simplest Version: Cow Path Problem

12 48

Doubling strategy 9-competitive (best deterministic algo)

Simplest Version: Cow Path Problem

12 48

s

Old Bounds:

▸ deterministic: -competitive [Burley ’96, Fiat
et al. ’91]

O(k ⋅ 2k) ∩ Ω(2k)

▸ randomized: [Ramesh ’93]O(k13) ∩ Ω(k2/log1+ϵ k)

▸ stuck since 1993

State of the Art:

Old Bounds:

▸ deterministic: -competitive [Burley ’96, Fiat
et al. ’91]

O(k ⋅ 2k) ∩ Ω(2k)

▸ randomized: [Ramesh ’93]O(k13) ∩ Ω(k2/log1+ϵ k)

▸ stuck since 1993

New tight randomized bound:
[Bubeck-Coester-Rabani 22,23]

Θ(k2)

State of the Art:

▸ Binary tree evolves over time:

▸ Agent must stay at leaves

▸ Cost = distance moved by agent

Evolving Tree Game (ETG)

Fork

Grow

Delete

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

Reduction: LGT ETG≤

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

LGT:

ETG:

▸ Wlog layered graph is a tree [Fiat et al. ’91]
 (build online the tree of shortest paths from)s

s

Reduction: LGT ETG≤

Observation: depth #leaves ≤ = |Li | ≤ k

LGT:

ETG:

Algorithm

▸ Fork: Do nothing (almost)

▸ Growth:

▸ Deletion:

Algorithm

▸ Fork: Do nothing (almost)

▸ Growth:

▸ Deletion:

Algorithm

▸ Fork: Do nothing (almost)

▸ Growth:

▸ Deletion:

Algorithm

x′ u = −
2xu

w̃u
w̃′ u +

xu + δu

w̃u
(λp(u) − λu)

▸ Fork: Do nothing (almost)

▸ Growth:

▸ Deletion:

Algorithm

x′ u = −
2xu

w̃u
w̃′ u +

xu + δu

w̃u
(λp(u) − λu)

probability mass
in subtree of
xu =

u

weight of edge w̃u =
2k − 1

2k − depth(u)
⋅ (u, p(u))

chosen s.t. x is well-defined probability

δu =
1

2depth(u)

▸ Fork: Do nothing (almost)

▸ Growth:

▸ Deletion:

Algorithm

x′ u = −
2xu

w̃u
w̃′ u +

xu + δu

w̃u
(λp(u) − λu)

probability mass
in subtree of
xu =

u

weight of edge w̃u =
2k − 1

2k − depth(u)
⋅ (u, p(u))

chosen s.t. x is well-defined probability

δu =
1

2depth(u)

wu → ∞

xu → 0

For a suitable potential function , for any step (discrete or
continuous) we have

P

Analysis

Δcost + ΔP ≤ O(k2) ⋅ Δopt

For a suitable potential function , for any step (discrete or
continuous) we have

P

Analysis

Δcost + ΔP ≤ O(k2) ⋅ Δopt

P := 2∑
u

w̃u (4kyu log
1 + δu

xu + δu
+ (2k − depth(u))xu)

For a suitable potential function , for any step (discrete or
continuous) we have

P

Analysis

Δcost + ΔP ≤ O(k2) ⋅ Δopt

P := 2∑
u

w̃u (4kyu log
1 + δu

xu + δu
+ (2k − depth(u))xu)

WHERE IS THIS ALL COMING FROM???

▸ metric space ,

▸ At time

▸ revealed

▸ Choose server position

▸ Pay

(M, d) |M | = n

t = 1,2,…

ct : M → ℝ+ ∪ {∞}

pt ∈ M

d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS) [Borodin, Linial, Saks 1987]

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

Randomized MTS on Trees r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

▸ Cost vectors (supported on leaves) appear in
continuous time

c(t) ∈ ℝV
+

▸ Algo maintains x(t) ∈ K

▸ Pays

Randomized MTS on Trees

∫ (⟨c(t), x(t)⟩ + ⟨w, |x′ (t) |⟩) dt

r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

▸ Cost vectors (supported on leaves) appear in
continuous time

c(t) ∈ ℝV
+

▸ Algo maintains x(t) ∈ K

▸ Pays

Randomized MTS on Trees

∫ (⟨c(t), x(t)⟩ + ⟨w, |x′ (t) |⟩) dt

r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

Algorithm:

 x(t) = arg min
x∈K

optt(x) + Φ(x)
weighted entropy ≈ −

≈ predictability of x

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

▸ Cost vectors (supported on leaves) appear in
continuous time

c(t) ∈ ℝV
+

▸ Algo maintains x(t) ∈ K

▸ Pays

Randomized MTS on Trees

∫ (⟨c(t), x(t)⟩ + ⟨w, |x′ (t) |⟩) dt

r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

Algorithm:

 x(t) = arg min
x∈K

optt(x) + Φ(x)
weighted entropy ≈ −

≈ predictability of x

General technique

Algorithm:

 x(t) = arg min
x∈K

optt(x) + Φ(x)

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

Randomized MTS on Trees r

p(u)

u

wu

 [Bubeck,Cohen,Lee,Lee ’19]

weighted entropy ≈ −
≈ predictability of x

General technique

One can show, this is equivalent to:

Algorithm:

 x(t) = arg min
x∈K

optt(x) + Φ(x)

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

Randomized MTS on Trees r

p(u)

u

wu

∇2Φ(x(t))x′ (t) ∈ − c(t) − NK(x(t))

normal cone of at K x(t)

 [Bubeck,Cohen,Lee,Lee ’19]

weighted entropy ≈ −
≈ predictability of x

General technique

One can show, this is equivalent to:

Algorithm:

 x(t) = arg min
x∈K

optt(x) + Φ(x)

K := x ∈ [0,1]V xr = 1,∀u ≠ leaf : xu = ∑
v : p(v)=u

xv

Randomized MTS on Trees r

p(u)

u

wu

∇2Φ(x(t))x′ (t) ∈ − c(t) − NK(x(t))

normal cone of at K x(t)

 [Bubeck,Cohen,Lee,Lee ’19]

weighted entropy ≈ −
≈ predictability of x

General technique

Mirror descent

▸ Let be offline algoy(t) ∈ K

▸ D(t) := Φ(y(t)) − Φ(x(t)) − ⟨∇Φ(x(t)), y(t) − x(t)⟩

Randomized MTS on Trees [Bubeck,Cohen,Lee,Lee ’19]

▸ Let be offline algoy(t) ∈ K

▸ D(t) := Φ(y(t)) − Φ(x(t)) − ⟨∇Φ(x(t)), y(t) − x(t)⟩

▸ Short calculation

⟹

⟨c(t), x(t)⟩ + D′ (t) ≤ ⟨c(t), y(t)⟩ + LipΦ ⋅ ⟨w, |y′ (t) |⟩

Randomized MTS on Trees [Bubeck,Cohen,Lee,Lee ’19]

▸ Let be offline algoy(t) ∈ K

▸ D(t) := Φ(y(t)) − Φ(x(t)) − ⟨∇Φ(x(t)), y(t) − x(t)⟩

▸ Short calculation

⟹

⟨c(t), x(t)⟩ + D′ (t) ≤ ⟨c(t), y(t)⟩ + LipΦ ⋅ ⟨w, |y′ (t) |⟩

Choosing for fixed

[Bubeck,Cohen,Lee,Lee ’19] show

Φ(x) = ∑
u

wu(xu + δu)log(xu + δu) δ ∈ K

 ⟨w, (x′ (t))+⟩ + Ψ′ (t) ≤ depth ⋅ ⟨c(t), x(t) + δ⟩

where Ψ(t) := − ∑
u

depth(u) ⋅ wuxu(t)

Randomized MTS on Trees [Bubeck,Cohen,Lee,Lee ’19]

Idea: Same algo, but with c(t) := w′ (t)

Algorithm for Evolving Tree Game

Idea: Same algo, but with c(t) := w′ (t)

Three complications:

Algorithm for Evolving Tree Game

Idea: Same algo, but with c(t) := w′ (t)

Three complications:

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

Idea: Same algo, but with c(t) := w′ (t)

Three complications:

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

When depth decreases, increases(u) Ψ

Idea: Same algo, but with c(t) := w′ (t)

Three complications:

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

When depth decreases, increases(u) Ψ

When grows, increasesw D

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

In MTS, choice ensuresδu =
leaves below u

leaves

 LipΦ = O (log
1

minu δu) = O(log(# leaves))

This can increase/decrease due to Fork/Delete
 bad effects on

δu
⟹ D

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

In MTS, choice ensuresδu =
leaves below u

leaves

 LipΦ = O (log
1

minu δu) = O(log(# leaves))

This can increase/decrease due to Fork/Delete
 bad effects on

δu
⟹ D

Solution: δu := 2

Then and only increases good effects on δ ∈ K δu ⟹ D

LipΦ = O (log
1

minu δu) = O(depth)

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

−depth(u)

Three complications:

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

When depth decreases, increases(u) Ψ

When grows, increasesw D

When depth decreases, increases(u) Ψ

Solution: Replace by to cancel bad effects. wu w̃u

When depth decreases, increases(u) Ψ

Solution: Replace by to cancel bad effects. wu w̃u

Specifically, w̃u :=
2k − 1

2k − depth(u)
wu

Then , so error is smallwu ≤ w̃u ≤ 2wu

When depth decreases, increases(u) Ψ

Three complications:

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

When depth decreases, increases(u) Ψ

When grows, increasesw D

When grows, increasesw D

Solution: Essentially, replace

 and

by

 and

Now increase of due to growth of can be charged to OPT.

D = ∑
u

w̃u ((yu + δu)log
yu + δu

xu + δu
+ xu − yu) c(t) = w′ (t)

D = ∑
u

w̃u (2yu log
yu + δu

xu + δu
+ xu − yu) c(t) =

2x
x + δ

w′ (t)

D w

When grows, increasesw D

Algorithm for Evolving Tree Game

Tree topology (and hence) evolves cannot choose fixed K ⇝ δ ∈ K

When depth decreases, increases(u) Ψ

When grows, increasesw D

▸ Mirror descent works even in evolving metric spaces

▸ -competitiveness for MTS becomes:

▸ for evolving tree game

▸ for LGT and chasing small sets

O(depth ⋅ log n)

O(depth2)

O(k2)

JOINT WORK WITH

SÉBASTIEN BUBECK (MICROSOFT RESEARCH)
YUVAL RABANI (HEBREW UNIVERSITY OF JERUSALEM)

The Randomized k-Server Conjecture
is *****!

▸ servers in metric space k (M, d)

▸ At time t = 1,2,…

▸ point requestedrt ∈ M

▸ A server must move to rt

k-server problem

▸ servers in metric space k (M, d)

▸ At time t = 1,2,…

▸ point requestedrt ∈ M

▸ A server must move to rt

k-server problem

▸ servers in metric space k (M, d)

▸ At time t = 1,2,…

▸ point requestedrt ∈ M

▸ A server must move to rt

k-server problem

▸ servers in metric space k (M, d)

▸ At time t = 1,2,…

▸ point requestedrt ∈ M

▸ A server must move to rt

▸ Cost = distance traveled

k-server problem

▸ servers in metric space k (M, d)

▸ At time t = 1,2,…

▸ point requestedrt ∈ M

▸ A server must move to rt

▸ Cost = distance traveled

k-server problem

k-server often called “holy grail of competitive analysis”

-server conjecture: -competitive deterministic algorithmk ∃ k

State of the art:

▸ [Manasse,McGeoch,Sleator 88]

▸ [Koutsoupias,Papadimitriou 94]

▸ in special cases

≥ k

≤ 2k − 1

= k

-server conjecture: -competitive deterministic algorithmk ∃ k

State of the art:

▸ [Manasse,McGeoch,Sleator 88]

▸ [Koutsoupias,Papadimitriou 94]

▸ in special cases

≥ k

≤ 2k − 1

= k

-server conjecture: -competitive deterministic algorithmk ∃ k

Randomized -server conjecture:k -comp. rand. algoO(log k)∃

State of the art:

▸ [Manasse,McGeoch,Sleator 88]

▸ [Koutsoupias,Papadimitriou 94]

▸ in special cases

≥ k

≤ 2k − 1

= k

-server conjecture: -competitive deterministic algorithmk ∃ k

Randomized -server conjecture:k
State of the art:

▸ [Bartal,Bollobas,Mendel 01,
 Bartal,Linial,Mendel,Naor 03]

▸ in -point metrics [Bubeck,Cohen,Lee,Lee,Madry 18]
 where =aspect ratio [Bubeck,Cohen,Lee,Lee,Madry 18]

▸ in special cases

Ω(log k / log log k)

O(log2 k log n) n
O(log3 k log Δ) Δ

Θ(log k)

-comp. rand. algoO(log k)∃

Randomized -server conjecture:k
a -competitive randomized algorithmO(log k)n∃

Theorem [Bubeck,Coester,Rabani 23]:
o -competitive randomized algorithmO(log k)n∃

o -competitive randomized algorithmO(log k)n∃

More precisely:

Theorem: Comp. ratio is in some metrics of
points

Ω(log2 k) k + 1

Theorem [Bubeck,Coester,Rabani 23]:

o -competitive randomized algorithmO(log k)n∃

More precisely:

Theorem: Comp. ratio is in some metrics of
points

Ω(log2 k) k + 1

Also tight universal lower bound:

Theorem: Comp. ratio is in all metrics of pointsΩ(log k) > k

Theorem [Bubeck,Coester,Rabani 23]:

▸ metric space , (M, d) |M | = n

▸ 1 server, initially at p0 ∈ M

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

Metrical Task Systems (MTS)

▸ metric space , (M, d) |M | = n

▸ 1 server, initially at p0 ∈ M

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

MTS with -server problemct : M → {0,∞} ≡ (n − 1)

Metrical Task Systems (MTS)

▸ metric space , (M, d) |M | = n

▸ 1 server, initially at p0 ∈ M

▸ At time t = 1,2,…

▸ revealedct : M → ℝ+ ∪ {∞}

▸ Choose pt ∈ M

▸ Pay d(pt−1, pt) + ct(pt)

MTS with -server problemct : M → {0,∞} ≡ (n − 1)

Corollary: Comp. ratio of MTS is in some metrics (tight)
 in all metrics (tight)

Ω(log2 n)
Ω(log n)

Metrical Task Systems (MTS)

Previous best existential LB was :
[Borodin,Linial,Saks 87]

Ω(log n)

Previous best existential LB was :
[Borodin,Linial,Saks 87]

Ω(log n)

▸ metric space with (M, d) d(x, y) = 1x≠y

Previous best existential LB was :
[Borodin,Linial,Saks 87]

▸ metric space with

▸ for unif. at random

Ω(log n)

(M, d) d(x, y) = 1x≠y

ct(p) := {∞ p = rt

0 p ≠ rt
rt ∈ M

∞

0

0
0

0

0

0
0

Previous best existential LB was :
[Borodin,Linial,Saks 87]

▸ metric space with

▸ for unif. at random

Ω(log n)

(M, d) d(x, y) = 1x≠y

ct(p) := {∞ p = rt

0 p ≠ rt
rt ∈ M

∞ 0

0
0

0

00
0

Previous best existential LB was :
[Borodin,Linial,Saks 87]

▸ metric space with

▸ for unif. at random

Ω(log n)

(M, d) d(x, y) = 1x≠y

ct(p) := {∞ p = rt

0 p ≠ rt
rt ∈ M

∞

00

0
0

00
0

Previous best existential LB was :
[Borodin,Linial,Saks 87]

▸ metric space with

▸ for unif. at random

▸

▸

Ω(log n)

(M, d) d(x, y) = 1x≠y

ct(p) := {∞ p = rt

0 p ≠ rt
rt ∈ M

𝔼[cost] = #requests / n

𝔼[opt] = #requests / Ω(n log n)

∞

00

0
0

00

0

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

?

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Some Intuition

The Road Not Taken [Robert Frost, 1915]

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Metric space is similar to diamond graph

M1 = M2 = M3 =

Mw+1 =
M w

M w
M

w

M
w

Proof of Ω ((log n
log log n)

2

)

▸ Construct metric space recursively

▸ Goal: (random) sequence s.t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

▸ Construct metric space recursively

▸ Goal: (random) sequence s.t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

▸ Construct metric space recursively

▸ Goal: (random) sequence s.t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

3Rw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

 cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

?

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

Rw Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)

Rw

2
− Rw

Rw

2
+ Rw

+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ Rw ⋅ Rw ⋅ diam(Mw)
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Rw ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥
+ 0.5 ⋅ Rw ⋅ Rw ⋅ diam(Mw)
+ (1.5 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)
(3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Rw ⋅ Rw ⋅ diam(Mw)

=

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

Mw

Rw

▸ Construct metric space recursively

▸ Goal: (random) sequence s. t.

opt = diam(Mw)
cost ≥ Rw ⋅ diam(Mw)

Mw

M w

M
w

Mw Mw Mw Mw

Mw+1

Mw M
w

Mw Mw Mw Mw Mw

M w

…
…

⏟ Rw
Rw

2
− Rw

Rw

2
+ Rw

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Mw

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Need , so Rw+1 ≤
cost
opt

Rw+1 ≤ Rw +
Rw

3

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Need , so Rw+1 ≤
cost
opt

Rw+1 ≤ Rw +
Rw

3

 E.g. Rw =
w2

81
= Ω(w2)

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Need , so Rw+1 ≤
cost
opt

Rw+1 ≤ Rw +
Rw

3

 E.g. Rw =
w2

81
= Ω(w2)

n = |Mw+1 | ≤ 6Rw |Mw | ≤
w

∏
i=1

6Ri ≤
w

∏
i=1

i2 = (w!)2

= 2O(w log w)

cost ≥ (3 ⋅ Rw + Rw) ⋅ Rw ⋅ diam(Mw)

opt = 3 ⋅ Rw ⋅ diam(Mw)

Need , so Rw+1 ≤
cost
opt

Rw+1 ≤ Rw +
Rw

3

 E.g. Rw =
w2

81
= Ω(w2)

n = |Mw+1 | ≤ 6Rw |Mw | ≤
w

∏
i=1

6Ri ≤
w

∏
i=1

i2 = (w!)2

= 2O(w log w)

⟹ Rw = Ω(w2) = Ω ((log n
log log n)

2

)

▸ Try same with smaller : use only 6 copies ofn

▸ n = |Mw | ≤ 6w

Removing log log
Mw

▸ Try same with smaller : use only 6 copies ofn

▸ n = |Mw | ≤ 6w

▸ Problem:

▸ want to flip many coins, but only 3 copies per branch

Removing log log
Mw

▸ Try same with smaller : use only 6 copies ofn

▸ n = |Mw | ≤ 6w

▸ Problem:

▸ want to flip many coins, but only 3 copies per branch

▸ Idea:

▸ issue recursive request sequence “chunk by chunk”

▸ need refined inductive hypothesis

Removing log log
Mw

Mw

Key Lemma: rand. sequence of chunks and
rand. variables s.t.:

∃ ρ1ρ2…ρm
c1, …, cm

▸ 𝔼 [cost(ρi) ∣ ρ1…ρi−1] ≥ ci

▸ 𝔼 [∑ ci] = Ω(w2) ⋅ opt

▸ ci ≈ opt = diam(Mw)

Key Lemma: rand. sequence of chunks and
rand. variables s.t.:

∃ ρ1ρ2…ρm
c1, …, cm

▸ 𝔼 [cost(ρi) ∣ ρ1…ρi−1] ≥ ci

▸ 𝔼 [∑ ci] = Ω(w2) ⋅ opt

▸ ci ≈ opt = diam(Mw)

Proof idea:

▸ biased coins s.t. is martingale"cost at top − cost at bottom"

▸ martingale CLT/Berry-Esseen yields gap ±w⋅opt

▸ combine small chunks s.t. ci ≈ opt

▸ Improved LBs for k-taxi, distributed paging, metric allocation

▸ Similar construction for layered graph traversal⟹ Ω(k2)

Implications for other Problems

▸ Competitive ratio of MTS is

▸ on easiest metricsΘ(log n)

▸ on hardest metricsΘ(log2 n)

▸ Competitive ratio of k-server is

▸ on easiest metrics with pointsΘ(log k) ≥ k + 1

▸ on hardest metrics with pointsΘ(log2 k) = k + 1

▸ on hardest
metrics
Ω(log2 k) ∩ O (min{log2 k log n, log3 k log Δ, k})

Conclusion

▸ Competitive ratio of MTS is

▸ on easiest metricsΘ(log n)

▸ on hardest metricsΘ(log2 n)

▸ Competitive ratio of k-server is

▸ on easiest metrics with pointsΘ(log k) ≥ k + 1

▸ on hardest metrics with pointsΘ(log2 k) = k + 1

▸ on hardest
metrics
Ω(log2 k) ∩ O (min{log2 k log n, log3 k log Δ, k})

▸ Take-aways: diamond graphs are cool, consider recursion
chunk by chunk, look for proof ideas in old poems

Conclusion

