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IP models to learn rules

�ML models for Binary Classification
- Boolean (decision) rules

� Interpretable Machine Learning

� Integer Programming Formulation
- Column Generation Technique

� Cardinality constrained Multilinear set
- Polyhedral results

� Variants/applications of basic model
- Fairness/Model diagnostics

� Logistic Regression

� Knowledge graph completion
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Supervised Binary Classification

• Features: X1, . . . , Xm

• Data: {(xi; yi) : i ∈ 1, 2, . . . , n} where xi ∈ Rm.

• Label yi ∈ {0, 1}

• FeatureXj is either numeric or categorical.

• Goal: Separate 0s from 1s or find function f such that yi ≈ f (xi).
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Supervised Binary Classification

Blood Choles- Heart
Pressure -terol Disease
X1 X2 Y
100 75 0
120 175 1
80 250 1
110 150 0
90 190 1
... ... ...

◃ Linear support vector machines
◃ Decision Trees
◃ Neural networks
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Linear support vector machines

Find hyperplane that separates
points labelled 1 from points
labelled 0

Few nonzero coefficients →
more interpretable

0

1

◃ Vapnik, Chervonenkis ’63 - SVM
◃ Boser, Guyon, Vapnik ’92 - Kernel “trick”
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Learn boolean rule sets for binary classification

(X1 ≤ 150 ANDX2 ≥ 170) OR
(X1 ≤ 100 ANDX2 ≥ 130) OR
(X1 ≤ 80 ANDX2 ≥ 70)

Boolean rule set ≡ Boolean
formulae in Disjunctive normal
form

A data point is classified as 1 if
it satisfies at least one rule

111

◃ Dawes ’79
◃ Cohen ’95 - RIPPER
◃ Hongyu, Rudin, Seltzer ’17 - Scalable Bayesian Rule Sets
◃ Boros, Hammer, Ibaraki, Kogan, Mayoraz, Muchnik ’00 - L.A.D.
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Decision trees

Recursively partition space by
axis-parallel hyperplanes

𝑋2
≥ 170

𝑋1
> 80

𝑋1
≤ 150

0
𝑋2

≥ 70

0 1

0 1

0 1

01

1

1

0

0

1

0

1 0

0

◃ Hunt, Marin, Stone ’66
◃ Quinlan ’86 - ID3, C4.5
◃ Breiman, Friedman, Olshen, Stone ’84 - CART
◃ Bertsimas, Dunn ’17 - IP formulations for decision trees
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Related classifiers
DNF Boolean rule = Decision rule set

IF A THEN Y=1
IF B AND C THEN Y=1
IF D AND E THEN Y=1
ELSE Y=0

Decision list

IF A THEN Y=1
ELSE IF B AND C THEN Y=1
ELSE IF D AND E THEN Y=1
ELSE Y=0

Decision tree

Rivest ’87: Learning decision lists

Transforming one classifier to another one can lead to exponential
blowup in “size”/”complexity”.
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Interpretable Machine Learning

Explainable AI (XAI), Interpretable AI/ML, or Transparent AI refer to
models that can be easily understood by humans unlike “black box”
models

Interpretable models
Sparse linear models (e.g., SVM)
Decision trees
Decision rule sets
Decision lists

Noninterpretable models
Dense linear models
Neural Networks
Random Forests

◃ Interpretable models can be examined for:

Safety/Reliability, Fairness/Lack of Bias, Causality, Robustness

Doshi-Velez, Kim ’17: “Towards a rigorous science of interpretable ML”
Schmidt et. al. ’17, Muggleton et. al. ’18: Higher inspection time →
lower interpretability
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Prior work on Boolean rule sets

� Using heuristics and/or multiple criteria
- Covering e.g. RIPPER (Cohen ’95)
- Bottom-up combining
- Associative classification

Interpretable Boolean rule sets: Few rules/few conditions per rule

� Accuracy-simplicity optimization
- Interpretable decision sets (IDS): Lakkaraju, Bach, Leskovec ’16
- Bayesian rule sets (BRS): Wang, Rudin, Doshi-Velez, Liu, Klampfl,
MacNeille ’17
- Optimized ORs of ANDs: Wang Rudin ’15
- Disjunctions of conjunctions: Hauser et. al. ’10
These methods use rule mining to generate candidate clauses

- IP formulation with fixed # clauses, solved approximately using LP:
Su, Wei, Varshney, Malioutov ’16
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Learn boolean rule sets for binary classification

1 11 111

1) Choose rectangle boundaries from fixed gridlines.
2) Penalty for misclassication - 1 or # of times misclassified?
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Binarization

X1 X2 Y
100 75 0
120 175 1
80 250 1
110 150 0
90 190 1
... ... ...

→

X1 X1 X2 X2 Y
≤ 80 ≤ 100 ≤ 150 ≤ 200
0 1 1 1 0
0 0 0 1 1
1 1 0 0 1
1 1 1 1 0
0 1 0 1 1
... ... ... ... ...

Goal: Learn boolean functions (assume Xi is binary) in DNF form as
classifiers

(X1 ∧X3 ∧X4) ∨ (X2 ∧X5)
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Notation

Inputs to model
xi ∈ Rm, yi ∈ {0, 1} - data point i and it’s label
C - upper bound on complexity of chosen rule set

Model information
K - set of all possible rules
aik ∈ {0, 1} - aik = 1 iff data point i satisfies rule k.
ck - ‘complexity’ of rule k = 1 + number of conditions in rule

Variables
wk ∈ {0, 1} - binary variable which is 1 iff rule k is selected
ξi ≥ 0 - variable which is 1 iff chosen rules do not ‘cover’ data point i

- All features are assumed to be binary at this point
- aik = xik if k is index of a rule containing a single binary feature
-
∑

i∈k aikwk ≥ 1 iff ∨k:wk=1rulek(xi) = 1
- Here we assume rulek is a function from Rm → {0, 1}.

12



IP to select “best” subset of rules

Minimize 0-1 loss subject to complexity bound:

min
𝑤,𝜉



𝑖:𝑦𝑖=1

𝜉𝑖 + 

𝑖:𝑦𝑖=0

𝜉𝑖

𝜉𝑖 +

𝑘∈𝐾

𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, 𝑖: 𝑦𝑖 = 1

loss on positive instances loss on negative instances

cover positives

𝜉𝑖 ≥ 𝑎𝑖𝑘𝑤𝑘 , 𝑘 ∈ 𝐾, 𝜉𝑖≥ 0, 𝑖: 𝑦𝑖 = 0cover negatives



𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶complexity bound

𝑤𝑘 ∈ 0,1 , 𝑘 ∈ 𝐾select clause k or not

MIP has exponentially many inequalities/variables and is hard to solve
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“Master” IP with Hamming Loss objective

Minimize Hamming loss subject to complexity bound:

min
𝑤,𝜉



𝑖:𝑦𝑖=1

𝜉𝑖 + 

𝑖:𝑦𝑖=0



𝑘∈𝐾

𝑎𝑖𝑘𝑤𝑘

𝜉𝑖 +

𝑘∈𝐾

𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, 𝑖: 𝑦𝑖 = 1



𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶

𝑤𝑘 ∈ 0,1 , 𝑘 ∈ 𝐾

loss on positive instances loss on negative instances

cover positives

complexity bound

select clause k or not

Dash, Günlük, Wei (NIPS 2018): Search over exponential list of clauses
using column generation.
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Gap between 0-1 loss and Hamming Loss

Thm (Lawless, Dash, Günlük, Wei ’22) The 0-1 loss of the Hamming IP
solution can be ‘arbitrarily’ worse than that of the of 0-1 IP solution.

(No constant ratio between the two losses)

0 0  1  1  1  1  1  0  0  0
1  1  1  0  0  0  1  1  0  0
…
0  0  1  0  1  1  1  1  0  0
1  1  1  1  1  1  1  1  1  0
1  1  1  1  1  1  1  1  0  1

𝑛 =
𝑚 − 2
𝑚/2 + 2

𝑚

𝑚 − 2

𝑚/2

K = set of all rules that are
conjunctions of 𝑚/2 features

Optimal rule set for 0-1 loss =
disjunction of all rules which has 0-1 loss of 2/n

Optimal rule set for Hamming loss =
empty disjunction which has 0-1 loss of (n-2)/n

Positive labels

negative labels

𝑛
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Overfitting

= 1
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“Master” LP with Hamming Loss objective

Minimize Hamming loss subject to complexity bound:

min
𝑤,𝜉



𝑖:𝑦𝑖=1

𝜉𝑖 + 

𝑖:𝑦𝑖=0



𝑘∈𝐾

𝑎𝑖𝑘𝑤𝑘

𝜉𝑖 +

𝑘∈𝐾

𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, 𝑖: 𝑦𝑖 = 1



𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶

𝑤𝑘 ∈ [0,1], 𝑘 ∈ 𝐾

loss on positive instances loss on negative instances

cover positives

complexity bound

select clause k or not

reduced cost of rule k 

𝑖:𝑦𝑖=0

𝑎𝑖𝑘 − 

𝑖:𝑦𝑖=1

𝜇𝑖𝑎𝑖𝑘 + 𝜆𝑐𝑘
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Related work

� “Boosting” rule-based classifiers
- Demirez, Bennett, Shawe-Taylor ’02: LP-Boost
- Goldberg, Eckstein ’10: L0-RBoost
- Eckstein, Kagawa, Goldberg ’17, ’19: Rule-enhanced penalized
regression
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Column generation subproblem

Solve only over small subsets

clause complexity costs

clause data matrix

Restricted Master LP Pricing IP

Augment with improving clauses 
(columns)

Also generate columns using heuristic

Master LP

� Almost the same as theMaximummonomial agreement problem
- Kearns, Shapire, Sellie ’94
- Goldberg, Shan ’07
- Eckstein, Goldberg ’10, ’12: branch-and-bound method
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Column generation subproblem..

X1 X2 Y
100 75 0
120 175 1
80 250 1
110 150 0
90 190 1
... ... ...

→

X1 X1 X2 X2 Y
≤ 80 ≤ 100 ≤ 150 ≤ 200
0 1 1 1 0
0 0 0 1 1
1 1 0 0 1
1 1 1 1 0
0 1 0 1 1
... ... ... ... ...

↓

X1 X1 X2 X2 X1 ≤ 80 ∧ X1 ≤ 100 ∧
≤ 80 ≤ 100 ≤ 150 ≤ 200 X2 ≤ 150 X2 ≤ 200
0 1 1 1 0 1
0 0 0 1 0 0
1 1 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
... ... ... ... ... ...
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Pricing Problem

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1
1

−µ
2

−µ
1

−µ
3

−µ
4

−µ
5
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Pricing Problem

min
𝑧,𝑎



𝑖:𝑦𝑖=0

𝑎𝑖 − 

𝑖:𝑦𝑖=1

𝜇𝑖𝑎𝑖 + 𝜆 1 +
𝑗=1

𝑑

𝑧𝑗

𝑎𝑖 = ෑ

𝑗:𝑥𝑖𝑗=0

(1 − 𝑧𝑗) ∀𝑖

1 ≤
𝑗=1

𝑑

𝑧𝑗 ≤ 𝑈, 𝑧𝑗 ∈ 0,1 , 𝑗 = 1,… , 𝑑

whether to select feature j

reduced cost of clause incl. complexity penalty

clause
acts as 
conjunction
of features

at most U
features
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Pricing IP

min
𝑧,𝑎



𝑖:𝑦𝑖=0

𝑎𝑖 − 

𝑖:𝑦𝑖=1

𝜇𝑖𝑎𝑖 + 𝜆 1 +
𝑗=1

𝑑

𝑧𝑗

𝑎𝑖 + 𝑧𝑗 ≤ 1, 𝑖: 𝑦𝑖 = 1, 𝑗: 𝑥𝑖𝑗 = 0

𝑎𝑖 + 

𝑗:𝑥𝑖𝑗=0

𝑧𝑗 ≥ 1, 𝑎𝑖 ≥ 0, 𝑖: 𝑦𝑖 = 0

1 ≤
𝑗=1

𝑑

𝑧𝑗 ≤ 𝑈, 𝑧𝑗 ∈ 0,1 , 𝑗 = 1,… , 𝑑

whether to select feature j

reduced cost of clause incl. complexity penalty

clause
acts as 
conjunction
of features

at most U
features
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Solving the pricing IP

IP

◃ Pricing IP is hard to solve, as it has a poor LP relaxation bound, e.g.,
for the ILPD data set with U = 5:

# Binary Features # data points Opt. Obj Value LP Bound
155 520 -9 (after 10 min) -98

◃ Limit clause size, time limit
◃ Sample data points for large data sets

Clause generation heuristic

For k = 1, 2, . . .
1) Extend previously generated k − 1-literal clauses to
k-literals, choose the best
2) Use bounds to eliminate some of the generated
clauses.
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Numerical Evaluation

�Main competitors
- Bayesian Rule Sets (BRS): Wang et al. ’17]
- Alternating Minimization: (AM) Su, Wei, Varshney, Malioutov ’16
- Block Coordinate Descent: (BCD) Su, Wei, Varshney, Malioutov ’16
- IDS: Lakkaraju et al. ’17 [code was too slow]

◃ Complexity: # clauses + total # conditions

◃ Accuracy: 10-fold Cross Validation

◃ Binarization
- Sample decile thresholds for numerical features

◃ Time limits for our code: ≤ 5 min overall
- Master LP solves fast with CPLEX Barrier
- After column generation, we fix columns and solve IP with CPLEX
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Complexity versus Accuracy

Heart disease FICO explainable ML challenge
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MAGIC gamma telescope Musk molecules

0 20 40 60 80 100 120 140
complexity

65

70

75

80

85

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

0 20 40 60 80 100 120 140
complexity

84

86

88

90

92

94

96

98

100
%

 a
cc

ur
ac

y
CG
BRS
AM
BCD

26



Comparison with other methods
Complexity = # clauses + total # conditions

dataset CG BRS AM BCD RIPPER CART RF

adult 83.5 81.7 83.0 82.4 83.6 83.1 84.7

bank 90.0 87.4 90.0 89.7 89.9 89.1 88.7

gas 98.0 92.2 97.6 97.0 99.0 95.4 99.7

magic 85.3 82.5 80.7 80.3 84.5 82.8 86.6

mushroom 100.0 99.7 99.9 99.9 100.0 96.2 99.9

musk 95.6 93.3 96.9 92.1 95.9 90.1 86.2

FICO 71.7 71.2 71.2 70.9 71.8 70.9 73.1

adult 88.0 39.1 15.0 13.2 133.3 95.9

bank 9.9 13.2 6.8 2.1 56.4 3.0

gas 123.9 22.4 62.4 27.8 145.3 104.7

magic 93.0 97.2 11.5 9.0 177.3 125.5

mushroom 17.8 17.5 15.4 14.6 17.0 9.3

musk 123.9 33.9 101.3 24.4 143.4 17.0

FICO 13.3 23.2 8.7 4.8 88.1 155.0

accuracy

complexity

29,304

37,609

12,518

17,117

8,124

5,937

9,871

size
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FICO 2018 XML Challenge

Predict repayment risk (good/bad) from credit history: roughly
10,000 data points, 23 numerical features, 0/1 labels

�Winning entry:

(NumSatTrades≥ 23 AND ExtRiskEstimate≥ 71 AND NetFracRevolBurden≤ 64)
OR

(NumSatTrades≤ 22 AND ExtRiskEstimate≥ 76 AND NetFracRevolBurden≤ 79)
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Pricing Problem

min
𝑧,𝑎



𝑖:𝑦𝑖=0

𝑎𝑖 − 

𝑖:𝑦𝑖=1

𝜇𝑖𝑎𝑖 + 𝜆 1 +
𝑗=1

𝑑

𝑧𝑗

𝑎𝑖 = ෑ

𝑗:𝑥𝑖𝑗=0

(1 − 𝑧𝑗) ∀𝑖

1 ≤
𝑗=1

𝑑

𝑧𝑗 ≤ 𝑈, 𝑧𝑗 ∈ 0,1 , 𝑗 = 1,… , 𝑑

whether to select feature j

reduced cost of clause incl. complexity penalty

clause
acts as 
conjunction
of features

at most U
features
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Multilinear optimization

Let S1, . . . , Sm be subsets of {1, . . . , n}. The pricing problem is ≡

min
m∑
i=1

ciδi +

n∑
i=1

fizi

s.t. δi =
∏
j∈Si

zj, i = 1, . . . ,m

l ≤
n∑

j=1

zj ≤ u, zj ∈ {0, 1}, δi ∈ {0, 1}

An integer linear programming formulation of this problem is given by
the “standard linearization inequalities”:

0 ≤ δi ≤ zj ≤ 1

δi ≥
∑
j∈Si

zj − (|Si| − 1)
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Multilinear sets

Themultilinear set:

X = {(z, δ) ∈ {0, 1}n × {0, 1}m : δi =
∏
j∈Si

zj, i = 1, . . . ,m}

Del Pia, Khajavirad ’16, ’18, Del Pia, Khajavirad, Sahinidis ’18
Crama, Rodriguez-Heck ’17

The cardinality constrained multilinear set:

X l,u = {(z, δ) ∈ X : l ≤
n∑

j=1

zj ≤ u}

Mehrotra ’97, Fischer, Fischer, McCormick ’18

Pricing problem≡ optimizing a linear function overX l,u ≡ optimizing a
linear function over conv(X l,u).
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Binary polynomial optimization

Fortet ’60: Binary polynomial optimization ≡ binary MIP

- Unconstrained binary polynomial optimization ≡ optimizing a linear
function over the multilinear setX

Let β, γi ∈ R, αij ∈ Z+, Si ⊆ {1, . . . , n}

f (x) = β +

m∑
i=1

γi
∏
j∈Si

x
αij

j =

β +

m∑
i=1

γi
∏
j∈Si

xj if x ∈ 0, 1n.
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Convex hull ofX l,u

X = {(z, δ) ∈ {0, 1}n × {0, 1}m : δi =
∏
j∈Si

zj, i = 1, . . . ,m}

X l,u = {(z, δ) ∈ X : l ≤
n∑

j=1

zj ≤ u}

◃ Fischer, Fischer, McCormick ’18: Polyhedral characterization of X l,u

when l = 0 and nested Si

Nested Si: S1 ⊂ S2 ⊂ · · · ⊂ Sm ⊂ {1, . . . , n}

◃ Dash, Günlük, Chen ’21: Polyhedral characterization of X l,u for any
0 ≤ l < u ≤ n for nested Si.

◃ Dash, Günlük, Chen ’23: Polyhedral characterization of X l,u for any
0 ≤ l < u ≤ n whenm = 2.
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Notation

I - index set of data points
P ⊆ I - set of data points with label 1
N ⊆ I - set of data points with label 0
negk = number of data points inN to which a rule assigns value 1

Assume P andN are partitioned into P1, P2 andN1, N2.
Interpretation is (P1, N1) correspond to one group, (P2, N2) to another.
neglk = number of data points inNl to which a rule assigns value 1
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Fairness

Achieve classification parity across multiple groups
Assume we wish to add constraints to 0-1 loss MIP

Equality of opportunity
Difference in rate of loss for positive
instances of group 1 and 2 is bounded

1

|𝑃1|


𝑖∈𝑃1

𝜉𝑖 −
1

|𝑃2|


𝑖∈𝑃2

𝜉𝑖 ≤ 𝜀

1

|𝑃2|


𝑖∈𝑃2

𝜉𝑖 −
1

|𝑃2|


𝑖∈𝑃1

𝜉𝑖 ≤ 𝜀

1

|𝑁1|


𝑖∈𝑁1

𝜉𝑖 −
1

|𝑁2|


𝑖∈𝑁2

𝜉𝑖 ≤ 𝜀

Equalized odds
Former condition + 
Difference in rate of loss for negative
Instances of group 1 and 2 is bounded

1

|𝑁2|


𝑖∈𝑁2

𝜉𝑖 −
1

|𝑁1|


𝑖∈𝑁1

𝜉𝑖 ≤ 𝜀

Add more constraints to ensure ξ variables are correctly constrained
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Fairness

Achieve classification parity across multiple groups
Lawless, Dash, Gunluk, Wei ’21: add constraints to Hamming loss MIP

Equality of opportunity
Difference in rate of loss for positive
instances of group 1 and 2 is bounded

1

|𝑃1|


𝑖∈𝑃1

𝜉𝑖 −
1

|𝑃2|


𝑖∈𝑃2

𝜉𝑖 ≤ 𝜀

1

|𝑃2|


𝑖∈𝑃2

𝜉𝑖 −
1

|𝑃2|


𝑖∈𝑃1

𝜉𝑖 ≤ 𝜀

1

|𝑁1|


𝑘

neg𝑘
1𝑤𝑘 −

1

|𝑁2|


𝑘

neg𝑘
2𝑤𝑘 ≤ 𝜀

Equalized odds
Former condition + 
Difference in rate of loss for negative
Instances of group 1 and 2 is bounded

1

|𝑁2|


𝑘

neg𝑘
2𝑤𝑘 −

1

|𝑁1|


𝑘

neg𝑘
1𝑤𝑘 ≤ 𝜀

Add more constraints to ensure ξ variables are correctly constrained
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Heavy sets

LetR be a set of simple regions S ⊂ RN

Let |S| = |{i | xi ∈ S}|, and ci be weight of datapoint xi

Malioutov, Dash, Wei ’23 - sparse AND-rule regions

(1) Find heaviest-weight simple region from R subject to region-size
constraints

S∗ = argmaxS∈R
∑
xi∈S

ci , such that |S| ≤ K,

(2) Max average-of-weights with upper and lower bounds on region
size:

S∗ = argmaxS∈R
1

|S|
∑
xi∈S

ci , Kmin ≤ |S| ≤ Kmax.
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Simple regions

1
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Model changes (LetmA,mB be two models) ci = |mB(xi)−mA(xi)|2
High-error regions ci = |mA(xi)− yi|p, p = 1, 2 for regression
High-variance regions. ci = mA(xi)

2, using the max-avg formulation
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Heavy sets max-sum IP

Let I = {1, . . . , n} be index set of datapoints
a ∈ {0, 1}I is a vector of binary variables
ai = 1 iff datapoint i is in chosen region
J - index set of region boundaries

max
∑
i∈I

ciai

s.t. ai + zj ≤ 1, ∀i ∈ I, j ∈ J : xij = 0

ai +
∑

j:xij=0

zj ≥ 1 ∀i ∈ I

1 ≤
∑
j∈J

zj

ai ∈ {0, 1} ∀i ∈ I

zj ∈ {0, 1} ∀j ∈ J
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Heavy sets max-average IP

β is average wt, wmaxmaximum wt, βi = βai

max β
βi ≤ β ∀i
βi ≤ wmaxai ∀i
β + wmaxai ≤ βi + wmax ∀i
βi ≥ 0 ∀i
β ≥ 0∑
i∈I

wiai =
∑
i∈I

βi∑
i∈I

ai ≥ σ|I|

max-sum Constraints
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