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IP models to learn rules

» ML models for Binary Classification
- Boolean (decision) rules

» Interpretable Machine Learning

» Integer Programming Formulation
- Column Generation Technique

» Cardinality constrained Multilinear set
- Polyhedral results

» Variants/applications of basic model
- Fairness/Model diagnostics

» Logistic Regression

» Knowledge graph completion



Supervised Binary Classification

Features: X4,...,X,,

Data: {(x;;y;) : 1 € 1,2,...,n} where z; € R™,
Label y; € {0,1}

Feature X, is either numeric or categorical.

Goal: Separate Os from 1s or find function f such that y; ~ f(x;).



Supervised Binary Classification

Blood Choles- Heart
Pressure -terol Disease
X1 X5 Y

100 75 0

120 175 1

80 250 1

110 150 0

90 190 1

> Linear support vector machines
> Decision Trees
> Neural networks



Linear support vector machines

Find hyperplane that separates
points labelled 1 from points
labelled O

Few nonzero coefficients —
more interpretable

> Vapnik, Chervonenkis '63 - SVM
> Boser, Guyon, Vapnik 92 - Kernel “trick”



Learn boolean rule sets for binary classification

(X, < 150 AND X, > 170) OR .
(X, < 100 AND X, > 130) OR 5 |
(X1§8OANDX2Z7O) ¢ : ° o °

Boolean rule set = Boolean .

formulae in Disjunctive normal .
form
A data point is classified as 1 if
It satisfies at least one rule o

> Dawes 79

> Cohen '95 - RIPPER
> Hongyu, Rudin, Seltzer 17 - Scalable Bayesian Rule Sets

> Boros, Hammer, Ibaraki, Kogan, Mayoraz, Muchnik 00 - L.A.D.



Decision trees

Recursively partition space by ! .
axis-parallel hyperplanes . .
>170 : ° °
VAN T
/>80\ /<150\ .
>70 0 o o
& SR

> Hunt, Marin, Stone '66

> Quinlan’86 - ID3, C4.5

> Breiman, Friedman, Olshen, Stone 84 - CART

> Bertsimas, Dunn ’17 - IP formulations for decision trees



Related classifiers

DNF Boolean rule = Decision rule set

"4 8’

Decision tree Decision list

ELSE
ELSE

Rivest '87: Learning decision lists

Transforming one classifier to another one can lead to exponential
blowup in “size”/”"complexity”.



Interpretable Machine Learning

Explainable AI (XAI), Interpretable AI/ML, or Transparent Al refer to
models that can be easily understood by humans unlike “black box”
models

Interpretable models Noninterpretable models
Sparse linear models (e.g., SVM) Dense linear models
Decision trees Neural Networks
Decision rule sets Random Forests

Decision lists

> Interpretable models can be examined for:

Safety/Reliability, Fairness/Lack of Bias, Causality, Robustness

Doshi-Velez, Kim ’17: “Towards a rigorous science of interpretable ML”
Schmidt et. al. 17, Muggleton et. al. '18: Higher inspection time —
lower interpretability



Prior work on Boolean rule sets

» Using heuristics and/or multiple criteria
- Covering e.g. RIPPER (Cohen ’95)

- Bottom-up combining

- Associative classification

Interpretable Boolean rule sets: Few rules/few conditions per rule

» Accuracy-simplicity optimization

- Interpretable decision sets (IDS): Lakkaraju, Bach, Leskovec ’16

- Bayesian rule sets (BRS): Wang, Rudin, Doshi-Velez, Liu, Klampfl,
MacNeille ’17

- Optimized ORs of ANDs: Wang Rudin "15

- Disjunctions of conjunctions: Hauser et. al. ’10

These methods use rule mining to generate candidate clauses

- IP formulation with fixed # clauses, solved approximately using LP:
Su, Wel, Varshney, Malioutov 16



Learn boolean rule sets for binary classification
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1) Choose rectangle boundaries from fixed gridlines.
2) Penalty for misclassication - 1 or # of times misclassified?




Binarization

X, X, X, X, Y
X X Y
L 2 <80 <100 | <150 <200
100 75 | O
0 1 1 1 0
120 175 | 1
0 0 0 1 1
80 250 |1
1 1 0 0 1
110 150 | O N
90 190 |1 1 1 1 1 0
, , , 0 1 0 1 1

Goal: Learn boolean functions (assume X; is binary) in DNF form as
classifiers
(X1 A X3NAXy)V (Xo A Xs)
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Notation

Inputs to model
xr; € R™ y;, € {0,1} - data point ¢ and it’s label
C - upper bound on complexity of chosen rule set

Model information

IC - set of all possible rules

air € {0,1} - a;x = 1 iff data point i satisfies rule k.

cr. - ‘complexity’ of rule k£ =1 + number of conditions in rule

Variables
wy € {0, 1} - binary variable which is 1 iff rule & is selected
¢; > 0 - variable which is 1 iff chosen rules do not ‘cover’ data point ¢

- All features are assumed to be binary at this point

- a;, = xik If k1S Index of a rule containing a single binary feature
- Ziek a;rwWe > 1 hii \/kzwk:lrulek(wi) =1

- Here we assume ruley is a function from R™ — {0, 1}.
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IP to select “best” subset of rules

Minimize 0-1 loss subject to complexity bound:

min ) G+ ) &

iyi=1 i:y;=0

&+ z Gow, =1, &3>0, iy =1
keK

& =aywy, keK, =0, i:y;=0

chwk <C

keK
wy € {0,1}, k € K

MIP has exponentially many inequalities/variables and is hard to solve
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“Master” IP with Hamming Loss objective

Minimize Hamming loss subject to complexity bound:

min z & + z Zaika
w,é

i:yi=1 1:y;i=0 kEK

€i+zaikwk21; 512 0, i:yizl
keK

ECka <C

keK

Wy € {0,1}, keK

Dash, Gunlik, Wei (NIPS 2018): Search over exponential list of clauses
using column generation.
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Gap between 0-1 loss and Hamming Loss

Thm (Lawless, Dash, Gunliak, Wei’22) The 0-1 loss of the Hamming IP
solution can be ‘arbitrarily’ worse than that of the of 0-1 IP solution.

(No constant ratio between the two losses)

, A | Positive labels

m/?2
{—A—‘ —
001 10/00 /
111 11
— Nn

m—2 negative labels

K = set of all rules that are
conjunctions of m/2 features

Optimal rule set for 0-1 loss =
disjunction of all rules which has 0-1 loss of 2/n

Optimal rule set for Hamming loss =
empty disjunction which has 0-1 loss of (n-2)/n
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Overfitting
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“Master” LP with Hamming Loss objective

Minimize Hamming loss subject to complexity bound:

min z & + z Zaikwk
w,§

i:yi=1 1:y;i=0 keEK

€i+zaikwk21: ¢ =0, iny; =1
keK

Z CeWr < C

keK

Wi € [0,1], k€K

2 Aj — Z Ky + Acy

1:y;=0 i:y;i=1
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Related work

» “Boosting” rule-based classifiers

- Demirez, Bennett, Shawe-Taylor '02: LP-Boost

- Goldberg, Eckstein "10: L,-RBoost

- Eckstein, Kagawa, Goldberg 17, '19: Rule-enhanced penalized

regression
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Column generation subproblem

Master LP

clause data matrix

Pricing IP

» Almost the same as the Maximum monomial agreement problem
- Kearns, Shapire, Sellie '94

- Goldberg, Shan '07

- Eckstein, Goldberg ’10, '12: branch-and-bound method
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Column generation subproblem..

X, X, X, X, Y
X1 Xy | Y <80 <100 | <150 <200
100 75 |0

0 1 1 1 0
120 175 | 1

0 0 0 1 1
80 250 |1

1 1 0 0 1
110 150 | 0 N
90 190 | 1 1 1 1 1 0
: | | 0 1 0 1 1

!

X, X, X, X, X, <S0A X;<100A
<80 <100 | <150 <200 | X, <150 Xy <200
0 1 1 1 0 1
0 0 0 1 0 0
1 1 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
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Pricing Problem
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Pricing Problem

m1n z a; — Z ulal+ﬂl(1+2 )
j=1

Lyi= Lyi=

1_[ 1-2z) Vi

Jixij=0

d
1 < zj_lzj <U,  z;€{01}j=1,..d
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Pricing IP

mln z a; — Z ulal+ﬂl(1+2 )
j=1

Y= Lyi=

ai+ZjS1, i:yizl, j:xij=0

ai+22j21, a; =0, i:y; =0
Jixij=0

d
1 < Zj_lzj <U, z;€{01}j=1,...4d
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Solving the pricing IP

IP

> Pricing IP is hard to solve, as it has a poor LP relaxation bound, e.g.,
for the ILPD data set with U = 5:

# Binary Features | # data points | Opt. ObjValue | LP Bound
155 | 520 | -9 (after 10 min) | -08

> Limit clause size, time limit
> Sample data points for large data sets

Clause generation heuristic

Fork=1,2,...
1) Extend previously generated k& — 1-literal clauses to
k-literals, choose the best
2) Use bounds to eliminate some of the generated
clauses.
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Numerical Evaluation

» Main competitors

- Bayesian Rule Sets (BRS): Wang et al. "17]

- Alternating Minimization: (AM) Su, Wei, Varshney, Malioutov '16

- Block Coordinate Descent: (BCD) Su, Wei, Varshney, Malioutov '16
- IDS: Lakkaraju et al. 17 [code was too slow]

> Complexity: # clauses + total # conditions

> Accuracy: 10-fold Cross Validation

> Binarization
- Sample decile thresholds for numerical features

> Time limits for our code: < 5 min overall
- Master LP solves fast with CPLEX Barrier
- After column generation, we fix columns and solve IP with CPLEX

25



Complexity versus Accuracy

Heart disease
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Comparison with other methods

Complexity = # clauses + total # conditions

accuracy

dataset CG BRS AM BCD RIPPER | CART RF

adult 83.5 81.7 83.0 82.4 83.6 83.1 84.7
bank 90.0 87.4 90.0 89.7 89.9 89.1 88.7

gas 98.0 92.2 97.6 97.0 99.0 95.4 99.7
magic 85.3 82.5 80.7 80.3 84.5 82.8 86.6
mushroom 100.0 99.7 99.9 99.9 100.0 96.2 99.9
musk 95.6 93.3 96.9 92.1 95.9 90.1 86.2
FICO 71.7 71.2 71.2 70.9 71.8 70.9 73.1

complexity size

adult 88.0 39.1 15.0 13.2 133.3 95.9 29,304
bank 9.9 13.2 6.8 2.1 56.4 3.0 37,609
gas 123.9 22.4 62.4 27.8 145.3 104.7 12,518
magic 93.0 97.2 11.5 9.0 177.3 125.5 17,117
mushroom 17.8 17.5 15.4 14.6 17.0 9.3 8,124
musk 123.9 33.9 101.3 24.4 143.4 17.0 5,937
FICO 13.3 23.2 8.7 4.8 88.1 155.0 9,871
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1able Machine Learning Challenc

—

Submissions will be accepted from April 18- August 31, 2018.

OVERVIEW  DATASET DETAILS CHALLENMGE RULES EXAMPLE EXPLANATIONS CHALLENGE FORUM  ENTER YOUR SUBMISSION FAQ

Introduction

Complex machine learning models have recently achieved great predictive successes for many applications. While these models excel at capturing complex,
non-linear relationships between variables, it is often the case that neither the trained model nor its individual predictions are readily explainable. In settings
where regulators or consumers demand explanations, understanding the structure and predictions of these models will pave the way for their wide adoption

in practice. Explainability will also help data scientists understand their datasets and the models’ predictions, uncover and correct for biases, and ultimately
create better models.

Motivation: Why the financial services industry?

Advanced machine learning methods are quickly finding applications throughout the financial services industry, transforming the handling of large and
complex datasets, but there is a huge gap between our ability to construct effective predictive models and our ability to understand and control these models.
In order to drive forward research in this area, FICO and a number of academic partners have collaborated to design a challenge based on a real financial
dataset. The challenge is not necessarily focused on accuracy, rather, it is focused on evaluating the explanations generated by the participants.

Every year, credit scoring methodologies provide millions of scores that evaluate the risk in billions of dollars in loans; in fact, the FICO Score is used in more

28



FICO 2018 XML Challenge

Predict repayment risk (good/bad) from credit history: roughly
10,000 data points, 23 numerical features, 0/1 labels

» Winning entry:

(NumSatTrades > 23 AND ExtRiskEstimate > 71 AND NetFracRevolBurden < 64)

OR
(NumSatTrades < 22 AND ExtRiskEstimate > 76 AND NetFracRevolBurden < 79)

20



Pricing Problem

m1n z a; — Z ulal+ﬂl(1+2 )
j=1

Lyi= Lyi=

1_[ 1-2z) Vi

Jixij=0

d
1 < zj_lzj <U,  z;€{01}j=1,..d
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Multilinear optimization

Let Sy,..., S, besubsets of {1,...,n}. The pricing problem is =

m n
min Z c;0; + Z fizi
=1 1=1

S.1. 5i:HZj7 1=1,....m

JES;

ZSZZJ <u, zj E{O,l}, 5@6{0,1}

g=1

An integer linear programming formulation of this problem is given by
the “standard linearization inequalities”:

5>sz (15;| = 1)

JES;
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Multilinear sets

The multilinear set:

X ={(z,0) €{0,1}" x {0,1}": &= ][ 2, i=1....,m}

JES;

Del Pia, Khajavirad '16, 18, Del Pia, Khajavirad, Sahinidis ’18
Crama, Rodriguez-Heck '17

The cardinality constrained multilinear set:

X =1(z,0)e X 1 Sszg u}

g=1

Mehrotra ’97, Fischer, Fischer, McCormick '18

Pricing problem = optimizing a linear function over X% = optimizing a
linear function over conv(X%v).
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Binary polynomial optimization

Fortet '60: Binary polynomial optimization = binary MIP

- Unconstrained binary polynomial optimization = optimizing a linear
function over the multilinear set X

Let 3,v; € R, Q55 cZ,,S; C {1,...,n}

B+Z%Hﬂv

1=1 JES;

5+271Hx]|fx60 1",

1=1 JES;
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Convex hull of X’u

X ={(z,0) €{0,1}" x {0,1}": &= ][ 2, i=1,...,m}

> Fischer, Fischer, McCormick '18: Polyhedral characterization of X!
when [ = 0 and nested S;

Nested S5;: S C S, C---C S, C{l,...,n}

> Dash, Glinlik, Chen ’21: Polyhedral characterization of X"* for any
0 <!l <u<nfornestedS,.

> Dash, Gunlik, Chen ’23: Polyhedral characterization of X% for any
0<l<u<nwhenm=2.
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Notation

I - index set of data points

P C I - set of data points with label 1

N C I - set of data points with label O

neg, = number of data points in IV to which a rule assigns value 1

Assume P and N are partitioned into P, P, and Ny, Ns.
Interpretation is (P;, V1) correspond to one group, (P, N,) to another.
neg! = number of data points in N, to which a rule assigns value 1
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Fairness

Achieve classification parity across multiple groups
Assume we wish to add constraints to 0-1 loss MIP

Equality of opportunity Equalized odds

|P1|Z€l |P2|Z€l — |N1|Z€l |N2 Zfiﬁe

IEP; LEP, LEN, IEN,
- <
IPlzf‘ IPlzgl_ |Nz|z€l |N1|ZEL_€
2 IEP, 2 IEP; LEN LENy

Add more constraints to ensure £ variables are correctly constrained
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Fairness

Achieve classification parity across multiple groups
Lawless, Dash, Gunluk, Wei ’21: add constraints to Hamming loss MIP

Equality of opportunity Equalized odds
PRI 12 mesb ~ ) negbwi <
< —— ) negyWr — —— ) negiw, < &€
PRI vl 7
P T Pl TApA N2 £
AN i ~ . neshwe <
< —— ) negyw, — —— ) negyw, <€
APREE N Wil T
Pl £ 1Pl N2 £ TAPA

Add more constraints to ensure £ variables are correctly constrained
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Heavy sets

Let R be a set of simple regions S ¢ RY
Let |S| = |{i | z; € S}|, and ¢; be weight of datapoint z;
Malioutov, Dash, Wei '23 - sparse AND-rule regions

(1) Find heaviest-weight simple region from R subject to region-size
constraints

S* = arg maxgex Z ¢;, suchthat |S|<K,
x, €S

(2) Max average-of-weights with upper and lower bounds on region
size:
S* = arg maxser 47 Z Ci, Kmin < |S‘ < Kmax-
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Simple regions
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Model changes (Let m 4, mp be two models) ¢; = |mp(x;) — ma(x;)|?
High-error regions ¢; = |m4(x;) — y;|?, p = 1,2 for regression
High-variance regions. c¢; = m 4(z;)?, using the max-avg formulation



Heavy sets max-sum IP

Let I ={1,...,n} beindex set of datapoints
a € {0,1} is a vector of binary variables

a; = 1 Iff datapoint ¢ is in chosen region

J - index set of region boundaries

MaX Z C;Q;

el
s.t.a; +z; <1, ViEI,jEJ:ZBZ‘j:O
a; + Z z; > 1 Viel
j:xij:O
1§ sz
jeJ
a; € {0,1} Viel
z; €40,1} Vield
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Heavy sets max-average IP

3 Is average wt, wmax maximum wt, 8; = Ba;

max 3
B < B
Bi < Wmaxa;
B+ wmaxa; < Bi + Wmax
B; >0
B>0

sz’az’ = Z@;

=y el

> ai>olll

icl

max-sum Constraints

Vi
Vi
Vi
Vi
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