Discrete Optimization for AI problems Knowledge graphs & Bayesian Graphs

Sanjeeb Dash IBM Research Travel supported by ONR

12th Cargese-Porquerolles workshop, Sep 4-8, 2023

Lecture 3 Outline

- Models to learn rules/knowledge graphs
- ► Bayesian Network structure learning
- ► Integer Programming Formulation to find optimal scores
- Latent variables and IP methods
- Numerical Experiments

Knowledge Graph completion

Knowledge Graph (KG): Directed node/edge-labeled multigraph; each edge is a "fact"; edge labels represent binary relations between nodes.

Example: (a, r_1, b) is a fact or $r_1(a, b)$ is true a, b, c, d could be individuals, r, r_1, r_2 could son_of, brother_of, related_to

Knowledge graphs often have missing (and incorrect) facts.

KG completion problem:

Find missing facts e.g., (b, brother_of, a), (c, brother_of, a)

Popular methods: Rule based & Embedding based

YAG03-10

Chatou Boo_Young-tae Toni Kuivasto Josh_Smith_(soccer) Albrecht_Dürer Edwin_Holliday William_Hopper Eric_Maskin George_Mallia Héctor_Cúper Peter_Creamer Robert_Blv Bangalore_Urban_district Benedict Iroha Ariel_Garcé Trevor_Senior Joe_Roberts Emanuele_Concetti Warren_Bradley_(footballer) Simone_Zaza Tom_Kouzmanis Ricardo_Moniz László_Sternberg Charlie_Chaplin Lee_Clarke Jason_Matthews_(footballer) Alan_Ainscow Antoine_Bonifaci

isLocatedIn playsFor isAffiliatedTo playsFor diedIn isAffiliatedTo actedIn graduatedFrom playsFor isAffiliatedTo wasBornIn hasGender isLocatedIn isAffiliatedTo playsFor playsFor actedIn playsFor playsFor playsFor isAffiliatedTo playsFor playsFor actedIn playsFor isAffiliatedTo isAffiliatedTo isAffiliatedTo

France Yangju_Citizen_FC Helsingin_Jalkapalloklubi Trinity_University_(Texas) Nuremberg Hereford_United_F.C. The_Bad_Seed_(1956_film) Harvard_University Malta_national_football_team Aris_Thessaloniki_F.C. Hartlepool male Karnataka D.C. United Rosario_Central Dorchester_Town_F.C. Our_Hospitality U.S._Pergolettese_1932 Macclesfield_Town_F.C. F.C._Esperia_Viareggio York_Region_Shooters Helmond_Sport New_York_Americans_(soccer) Caught_in_a_Cabaret Northern Ireland national under-21 football team Aberystwyth_Town_F.C. Everton_F.C. Bologna_F.C._1909

Rules

Example: $(X, \mathsf{son_of}, Y) \land (Y, \mathsf{son_of}, Z) \rightarrow (X, \mathsf{grandson_of}, Y)$

KG Completion Problem: Answer query (a, r, ?)

Standard Approach:

- 1. Learn rule-based function $f_r(X,Y)$ that gives high scores to likely facts (X,r,Y) where X,Y are nodes in the graph, and r is an edge-label
- 2. Answer query (a, r, ?) by finding x such that $f_r(a, x)$ has highest score.
- 3. If the correct answer is *b*, measure accuracy by average rank/reciprocal rank of *b* (MR/MRR)

Prior work

Kok, Domingos '05, Richardson, Domingos '06 – Markov Logic Networks Yang, Yang, Cohen '17 (NeuralLP) – Neuro-symbolic methods Rochstätel, Riedel '17 (NTP) – " Sadeghian, Armandpour, Ding, Wang '19 (DRUM) – " Evans, Grefenstette '18 – Differential ILP Das et al. '18 (Minerva) – Reinforcement Learning Qu et. al. '21 (RNNLogic) – RNN + Probabilistic methods Meilicke et. al. '19 (AnyBURL) – Data mining Teru, Denis, Hamilton '20 (GraIL) – Subgraph reasoning

Advantages: (1) Inductive reasoning is possible.(2) Interpretable models when few rules are generated.

Drawbacks: (1) Lower levels of accuracy compared to embedding methods (2) Current methods do not scale

Embedding based methods

Approach: Find $v_a \in \mathbb{R}^k$ for each node a and a mapping $T_r : \mathbb{R}^k \to \mathbb{R}^k$ for each relation r such that the score $||T_r(v_a) - v_b||$ is small for each fact (a, r, b).

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko '13 (TransE) Yang, Yih, He, Gao, Deng '15 (DistMult) Trouillon, Welbl, Riedel, Gaussier, Bouchard '16 (ComplEx) Dettmers, Pasquale, Pontus, Riedel '18 (ConvE) Lacroix, Usunier, Obozinski '18 (ComplEx-N3) Sun, Deng, Nie, Tang '19 (RotatE)

- Advantages: (1) Reasonable accuracy (2) Scalable
- Drawbacks: (1) Not effective for inductive reasoning (2) Model is not interpretable.

Our work

Goals: Develop a scalable, rule-learner returning compact rule sets

- Interpretability is an explicit goal, and we return low-complexity rules
- We trade off complexity versus accuracy

- Scalability is attained by solving linear programming models instead of non-convex models

Our approach

Approach: Learn few (FOL) rules R_1, \ldots, R_p and positive weights w_1, \ldots, w_p where each R_i has the form

 $r_1(X, X_1) \wedge r_2(X_1, X_2) \wedge \cdots \wedge r_l(X_{l-1}, Y) \rightarrow r(X, Y)$

where r_1, \ldots, r_l are relations in G.

Length of this rule is *l*; left-hand-side is the clause $C_i : V \times V \rightarrow \{0, 1\}$ The learned prediction/scoring function $f_r : V \times V \rightarrow \mathbb{R}_+$ for *r* is:

$$f_r(X,Y) = \sum_{i=1}^p w_i C_i(X,Y) \ \forall X,Y \in V$$

Main idea

Details

LP to learn KG rules

Minimize error for weighted collection of rules:

Model details

- E_r = set edges labeled by r, and (t_i, h_i) = th edge in E_r
- w_k variable gives weight for rule k; $w_k > 0$ implies rule k is chosen
- a_{ik} is a constant = $C_k(t_i, h_i)$
- c_k is a constant = 1+ rule length
- C is a parameter bounding weighted complexity of chosen rules
- τ is a parameter, neg_k is a constant

Modeling – Use all positive facts for a relation + sample some negative facts for the LP model

Algorithmic issues – Use simple shortest path heuristics to find relational paths, and associated rules – Iterate over different values of tau and complexity

Code available at: https://github.com/IBM/LPRules

Column generation

- Step 0 Fix an initial complexity and tau value
- Step 1 Use simple heuristics to create an initial collection of rules
- Step 2 Set up LP model and solve it
- Step 3 Obtain dual values of LP model

Step 4 – Dual values indicate which facts are "well-covered" and which are not. Heuristically generate new rules that "cover" facts that are not well-covered.

Step 5 – Repeat Steps 2 – 4 till termination criterion

Sizes of datasets

Datasets	# Relations	# Entities	# Train	# Test	# Valid
Kinship	25	104	8544	1074	1068
UMLS	46	135	5216	661	652
FB15k-237	237	14541	272115	20466	17535
WN18RR	11	40943	86835	3134	3034
YAG03-10	37	123182	1079040	5000	5000

Neuro-symbolic methods take a long time on FB15k-237 and cannot handle YAGO3-10

Experiments (accuracy)

Datasets	ComplEx-N3	AnyBURL	NeuralLP	DRUM	RNNLogic	LPRules
Kinship	0.889	0.626	0.652	0.566	0.687	0.746
UMLS	0.962	0.940	0.750	0.845	0.748	0.869
FB15k-237	0.362	0.226	0.222	0.225	† 0.288	0.255
WN18RR	0.469	0.454	0.381	0.381	0.451	0.459
YAG03-10	0.574	0.449				0.449

† We could not run RNNLogic on FB15k-237 and report numbers taken from Qu et al. (2021)

Running time + number of rules

Metric	Datasets	AnyBURL	NeuralLP	RNNLogic	LPRules
Average #	Kinship	6653.1	10.4	200.0	21.0
	UMLS	1837.6	15.1	100.0	4.2
rules per	FB15k-237	79.9	8.1		14.2
relation	WN18RR	47.3	14.3	200.0	15.6
	YAG03-10	63.0			7.8
Running time	Kinship	1.7	1.6	108.8	0.5
	UMLS	1.9	1.1	133.4	0.2
	FB15k-237	3.9	14565.9		234.5
	WN18RR	1.8	399.9	104.0	11.0
	YAG03-10	34.3			1648.4

Avg number of rules per relation and wall clock running time on a 60 core machine

Accuracy versus Complexity tradeoff

Change in MRR with change in average rules per relation

LPRules + rules from other codes

MRR values using rules generated by AnyBURL and RNNLogic (experiments A-D)

- A Use other rule-based code
- B Take rules and weights and use in our prediction function
- C Recalculate weights using complexity bound
- D Add our rules and recalculate weights

Bayesian Network Structure Learning

Bayesian Network: Directed acyclic graph (DAG) representing conditional probability relationships between variables

 $P(X_1, X_2, X_3, X_4) = P(X_4 | X_1) P(X_3 | X_1, X_2) P(X_2 | X_1) P(X_1)$

BNSL Problem - Learn DAG from data: DP methods: Koivisto, Sood '04, Silander, Myllymäki '06 A* search: Yuan, Malone '13 Branch-and-bound: Campos, Ji '11 IP based solver GOBNILP: Bartlett, Cussens '13, '17 GOBNILP is a state-of-the-art method: Malone et. al. '17

Causal Graphs/Causal BN

Graphical Models where directed edges represent causal relationships
DAG encodes structural equations

In a BN, $X \to Y \to Z$ and $X \leftarrow Y \leftarrow Z$ are indistinguishable.

Creating causal graphs

X ₁	L X ₂	X ₃	X ₄
1	0	1	0
0	1	1	1
1	1	1	0
0	1	1	1
0	0	0	1

Foster, Ipeirotis 2022

Score decompositions for BNSL

Score of DAG is sum of scores of "in-stars" (inward directed star)

Score calculation

Score of each"in-star" is calculated from data

MIP for score based approach

MIP has one variable per in-star, equations choosing one in-star per node, and *cluster inequalities* preventing cycles.

Opt. formulations

Notation: Node set - $V = \{1, ..., n\}$, P(i) = set of parent sets of i.

 $\begin{array}{ll} \text{MIP} & (\text{parent set variables}):\\ \text{max} & \sum_{i \in V} \sum_{P \in P(i)} c_{i,P} z_{i,P} \\ & \sum_{P \in P(i)} z_{i,P} = 1, \ \forall i \in V \\ & \sum_{i \in S, P \cap S = \emptyset} z_{i,P} \geq 1, \ \forall S \subseteq V \ * \\ & z_{i,P} \in \{0,1\} \end{array}$

Jaakkola, Sontag, Globerson, Meila '10: cluster constraints(*) Bartlett, Cussens '13, 17: IP + software (GOBNILP) Grotschel, Junger, Reinelt '85: Acyclic subgraph polytope

Latent Variables

Goal: Learn causal network structures in the presence of latent vars.

We use **ancestral acyclic directed mixed graphs** (with directed + bidirected edges) as models of data with latent confounders.

Chen, Dash, Gao '21: MIP formulation & first exact score-based method to find optimal AADMG for continuous Gaussian variables.

Ancestral graphs (AGs)

DAGs are not closed under marginalization!

Ancestral graphs (Richardson and Spirtes '02)

▶ Include all DAGs and are closed under marginalization ▶ Properties: No directed cycles $(a \rightarrow b \rightarrow ... \rightarrow a)$ No almost directed cycles $(a \leftrightarrow b \rightarrow c \rightarrow ... \rightarrow a)$

Continuous Guassian distributions

If $\epsilon_A - \epsilon_D$ are normally distributed random variables, then x has a multivariate normal distribution with covariance matrix Σ given by

$$(I-B)^{-1}\Omega(I-B)^{-T}$$

Forbidden structures

directed cycle

almost directed cycle

rooted arborescence + bidirected component

Learning methods

Constraint-based methods:

► Apply conditional independence test on the data to infer the graph structure: FCI (Sprites et al., '00), cFCI (Ramsey et al., '12)

Score-based methods:

Optimize a scoring criterion that measures the likelihood of the graph: GSMAG (Triantafillou and Tsamardinos, '16)

Hybrid methods:

► Use both a scoring criterion and conditional independence tests: M³HC (Tsirlis et al., '18), SPo (Bernstein et al., '20), CCHM (Chobtham and Constantinou, '20)

Current score-based and hybrid methods are all greedy or local search algorithms!

Scoring a DMG

► The BIC score (Schwarz '78) for graph *G* is given by

 $\mathsf{BIC}_{\mathcal{G}} = 2\ln(l_{\mathcal{G}}(\hat{\Sigma})) - \ln(N)(2|V| + |E|)$

► The maximum log-likelihood $\ln(l_{\mathcal{G}}(\hat{\Sigma}))$ can be decomposed by c-components in \mathcal{G} (Nowzohour et al., '17)

$$\begin{aligned} \ln(l_{\mathcal{G}}(\hat{\Sigma})) &= -\frac{N}{2} \sum_{D \in \mathcal{D}} \left[|D| \ln(2\pi) + \log(\frac{|\hat{\Sigma}_{\mathcal{G}_D}|}{\prod_{j \in pa_{\mathcal{G}}(D)} \hat{\sigma}_{Dj}^2}) + \frac{N-1}{N} tr(\hat{\Sigma}_{\mathcal{G}_D}^{-1} S_D - |pa_{\mathcal{G}}(D) \setminus D|) \right] \end{aligned}$$

district = component defined by bidirected edges c-component = district + in-edges per node in district

Decomposition into c-components

c-components

► We obtain a (BIC) score-maximizing ancestral ADMG for a set of continuous variables that follow a multivariate Gaussian distribution.

Score decomposition for AADMG

Score of AADMG is sum of scores of c-components

Approach

Our work: Learn an AADMG with maximum score from c-components

MIP formulation

Let \mathcal{C} be set of all c-components, and let D(C) be the district of a c-component C.

MIP to find optimal AADMG:

 $\begin{array}{ll} \max & \sum_{c \in \mathcal{C}} s_C z_C \\ & \sum_{C:i \in D(C)} z_C = 1, \ \forall i \in V \\ & G(z) \text{ has no directed and almost directed cycles} \\ & z_C \in \{0,1\} \end{array}$

Cutting planes to avoid cycles

Bicluster inequalities: ($w_{i,j} = \sum_{C:i \leftrightarrow j \in D(C)} z_C$)

$$\sum_{v \in S \setminus \{i,j\}} \sum_{P:P \cap S = \emptyset} z_{v,P} + \sum_{P^1:P^1 \cap S = \emptyset} \sum_{P^2:P^2 \cap S = \emptyset} z_{i,j,P^1,P^2} \ge w_{i,j}$$

Cutting planes generation

► Karger's ('93) random contraction algorithm for min-cut problems: Randomly contract edge ij with probability \propto edge weight

Separation heuristic for cluster inequalities:

- Let $\mu^k(S)$ denote the LHS of the cluster inequality at iteration k and

$$w_{ij}^k = \mu^k(\{i\}) + \mu^k(\{j\}) - \mu^k(\{i,j\}), \; \forall i,j$$

- At iteration k, randomly contract edge ij with probability $\propto w_{ij}^k$
- Remove nodes i and j, create a pseudo-node i' and replace all occurrences of i and j in the original graph by the pseudo-node
- Repeat until $\mu^k(\{i\}) < 1$ for some $i \Rightarrow$ a violated cluster inequality
- Similar separation heuristic for bi-cluster inequalities

Numerical Experiments

• Test set 1:

- 1. Randomly generated DAGs with 20 nodes
- 2. l = 2,4,6 variables set to be latent
- 3. d = remaining observed variables
- 4. A sample of N = 1000/10,000 realizations of observed variables per instance
- Candidate c-components:
 - 1. Single-node districts with up to three parents
 - 2. Two-node districts with up to one parent each node
- Compared methods:
 - 1. AGIP: our IP model
 - 2. DAGIP: our IP model with only single-node districts
 - 3. M³HC: a greedy hybrid method by Tsirlis et al. (2018)
 - 4. FCI: an exact constraint-based method by Sprites et al. (2000)
 - 5. cFCI: an exact constraint-based method by Ramsey et al. (2012)

Quality of formulation

20-node graphs; d = number of observed nodes, l = number of latent variables (removed from graph), N = number of samples.

(d,l,N)	Avg # bin vars before pruning	Avg # bin vars after pruning	Avg pruning time (s)	Avg root gap (%)	Avg soln. time (s)
(18, 2, 1000)	59229	4116	19.1	0.65	60.4
(16, 4, 1000)	39816	3590	13.6	0.43	41.0
(14, 6, 1000)	20671	1788	3.9	0.54	8.9
(18, 2, 10000)	59229	9038	33.0	0.67	323.2
(16, 4, 10000)	39816	7378	21.4	0.53	215.4
(14, 6, 10000)	20671	3786	6.4	0.56	47.2

Results for varying number of latent vars.

d = 18, l = 2, 4, 6, N = 10,000,

Current work

► Find optimal bow-free/arid graphs (supersets of AADMGs) using MIP

Use BSNL formulation, but extra variables for c-components with >1 node districts and no bows

$$\begin{array}{ll} \text{MIP} & (\text{parent set variables}):\\ \text{max} & \sum_{i \in V} \sum_{P \in P(i)} c_{i,P} z_{i,P} \\ & \sum_{P \in P(i)} z_{i,P} = 1, \ \forall i \in V \\ & \sum_{i \in S, P \cap S = \emptyset} z_{i,P} \geq 1, \ \forall S \subseteq V \ * \\ & z_{i,P} \in \{0,1\} \end{array}$$

Sparse instances

Dataset	Ground Truth	AADMG	Bow-free	Bhattacharya
0	-17741.6	-17741.6	-17741.6	-17765.1
1	-17508.5	-17508.5	-17508.5	-17511.9
2	-17872.5	-17871.2	-17871.2	-17872.5
3	-19055.6	-19093.6	-19055.6	-19123.7
4	-17888.1	-17884.1	-17881.6	-17908.4
5	-18584.9	-18595.5	-18584.9	-18625.4
6	-17791.2	-17790.1	-17789.5	-17795.6
7	-18964.8	-19010.8	-18964.8	-20438.8
8	-17562.1	-17562.1	-17562.1	-17565.6
9	-17627.9	-17655.9	-17627.9	-17681.6

Scores for sparse randomly generated datasets

Method	Precision			Recall			
	skeleton	dir.	bidir.	-	skeleton	dir	bdir
AADMG	0.906	0.711	0.450		0.950	0.818	0.283
Bow-free	0.969	0.812	0.633		0.975	0.873	0.517
Bhattacharya	0.830	0.749	0.179		0.949	0.774	0.383

Average results

Medium density instances

Dataset	Ground Truth	AADMG	Bow-free	Bhattacharya	LP-heuristic
0	-19057.4	-19169.2	-19117.4	-19071.4	-19061.3
1	-19802.3	-20082.1	-19916.3	-19830.9	-19825.3
2	-20606.4	-21074.8	-20857.5	-20613.9	-20623.2
3	-21178.7	-21332.9	-21267.9	-21207.7	-21190.7
4	-20865.8	-20993.5	-20962.1	-20876.5	-20870.1
5	-18846.5	-19031.6	-18936.4	-18848.3	-18855.4
6	-21268.7	-21405.1	-21347.0	-21716.6	-21288.2
7	-18906.2	-18924.9	-18921.7	-18927.6	-18908.4
8	-22152.7	-22517.5	-22320.3	-22226.1	-22189.1
9	-21059.0	-21118.6	-21100.4	-21110.3	-21070.5

Method	Precision			Recall			
	skeleton	dir.	bidir.	-	skeleton	dir	bdir
AADMG	0.840	0.442	0.100		0.693	0.488	0.050
Bow-free	0.837	0.336	0.083		0.732	0.383	0.034
Bhattacharya	0.799	0.641	0.388		0.946	0.783	0.398
LP-heuristic	0.812	0.424	0.367		0.858	0.589	0.074

Open questions

- ► How does one deal with the exponentially many variables
- ► Find valid inequalities for bounded indegree acyclic graphs

Cussens, Jarvisalo, Korhonen, Bartlett '17: detailed study of associated polytopes

References

- 1. S. Dash, J. Goncalves, Rule induction in knowledge graphs using linear programming, AAAI 2023.
- 2. R. Chen, S. Dash, T. Gao, Integer programming for causal structure learning in the presence of latent variables. ICML 2021, PMLR 139:1550-1560.
- J. Cussens, M. Jarvisalo, J. H. Korhonen, M. Bartlett, Bayesian Network Structure Learning with Integer Programming: Polytopes, Facets and Complexity, JAIR 58 (2017).