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Lecture 3 Outline

�Models to learn rules/knowledge graphs

� Bayesian Network structure learning

� Integer Programming Formulation to find optimal scores

� Latent variables and IP methods

� Numerical Experiments
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Knowledge Graph completion

KnowledgeGraph (KG):Directed node/edge-labeledmultigraph; each
edge is a “fact”; edge labels represent binary relations between nodes.

Example: (a, r1, b) is a fact or r1(a, b) is true
a, b, c, d could be individuals,
r, r1, r2 could son of, brother of, related to

a

b

d

c

r

r3r1

r2

r2

r1

Knowledge graphs often have missing (and incorrect) facts.

KG completion problem:
Find missing facts e.g., (b, brother of, a), (c, brother of, a)

Popular methods: Rule based & Embedding based
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YAGO3-10

Chatou isLocatedIn France
Boo Young-tae playsFor Yangju Citizen FC
Toni Kuivasto isAffiliatedTo Helsingin Jalkapalloklubi
Josh Smith (soccer) playsFor Trinity University (Texas)
Albrecht Dürer diedIn Nuremberg
Edwin Holliday isAffiliatedTo Hereford United F.C.
William Hopper actedIn The Bad Seed (1956 film)
Eric Maskin graduatedFrom Harvard University
George Mallia playsFor Malta national football team
Héctor Cúper isAffiliatedTo Aris Thessaloniki F.C.
Peter Creamer wasBornIn Hartlepool
Robert Bly hasGender male
Bangalore Urban district isLocatedIn Karnataka
Benedict Iroha isAffiliatedTo D.C. United
Ariel Garcé playsFor Rosario Central
Trevor Senior playsFor Dorchester Town F.C.
Joe Roberts actedIn Our Hospitality
Emanuele Concetti playsFor U.S. Pergolettese 1932
Warren Bradley (footballer) playsFor Macclesfield Town F.C.
Simone Zaza playsFor F.C. Esperia Viareggio
Tom Kouzmanis isAffiliatedTo York Region Shooters
Ricardo Moniz playsFor Helmond Sport
László Sternberg playsFor New York Americans (soccer)
Charlie Chaplin actedIn Caught in a Cabaret
Lee Clarke playsFor Northern Ireland national under-21 football team
Jason Matthews (footballer) isAffiliatedTo Aberystwyth Town F.C.
Alan Ainscow isAffiliatedTo Everton F.C.
Antoine Bonifaci isAffiliatedTo Bologna F.C. 1909
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Rules

Example: (X, son of, Y ) ∧ (Y, son of, Z)→ (X, grandson of, Y )

KG Completion Problem: Answer query (a, r, ?)

Standard Approach:

1. Learn rule-based function fr(X,Y ) that gives high scores to likely
facts (X, r, Y ) where X,Y are nodes in the graph, and r is an edge-
label

2. Answer query (a, r, ?)by findingx such that fr(a, x)has highest score.

3. If the correct answer is b, measure accuracybyaverage rank/reciprocal
rank of b (MR/MRR)
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Prior work

Kok, Domingos ’05, Richardson, Domingos ’06 – Markov Logic Networks
Yang, Yang, Cohen ’17 (NeuralLP) – Neuro-symbolic methods
Rochstätel, Riedel ’17 (NTP) – „
Sadeghian, Armandpour, Ding, Wang ’19 (DRUM) – „
Evans, Grefenstette ’18 – Differential ILP
Das et al. ’18 (Minerva) – Reinforcement Learning
Qu et. al. ’21 (RNNLogic) – RNN + Probabilistic methods
Meilicke et. al. ’19 (AnyBURL) – Data mining
Teru, Denis, Hamilton ‘20 (GraIL) – Subgraph reasoning

Advantages: (1) Inductive reasoning is possible.
(2) Interpretable models when few rules are generated.

Drawbacks: (1) Lower levels of accuracy compared to embedding methods
(2) Current methods do not scale
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Embedding based methods

Approach: Find va ∈ Rk for each node a and a mapping Tr : Rk → Rk

for each relation r such that the score ||Tr(va) − vb|| is small for each
fact (a, r, b).

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko ’13 (TransE)
Yang, Yih, He, Gao, Deng ’15 (DistMult)
Trouillon, Welbl, Riedel, Gaussier, Bouchard ’16 (ComplEx)
Dettmers, Pasquale, Pontus, Riedel ’18 (ConvE)
Lacroix, Usunier, Obozinski ’18 (ComplEx-N3)
Sun, Deng, Nie, Tang ’19 (RotatE)

Advantages: (1) Reasonable accuracy
(2) Scalable

Drawbacks: (1) Not effective for inductive reasoning
(2) Model is not interpretable.
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Our work

Goals: Develop a scalable, rule-learner returning compact rule sets

- Interpretability is an explicit goal, andwe return low-complexity rules

- We trade off complexity versus accuracy

- Scalability is attained by solving linear programming models instead
of non-convex models
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Our approach

Approach: Learn few (FOL) rules R1, . . . , Rp and positive weights
w1, . . . , wp where each Ri has the form

r1(X,X1) ∧ r2(X1, X2) ∧ · · · ∧ rl(Xl−1, Y )→ r(X,Y )

where r1, . . . , rl are relations in G.

Length of this rule is l; left-hand-side is the clause Ci : V × V → {0, 1}

The learned prediction/scoring function fr : V × V → R+ for r is:

fr(X,Y ) =

p∑
i=1

wiCi(X,Y ) ∀X,Y ∈ V
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Main idea
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Details
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edge 𝑟1 ∧ 𝑟2 ∧ 𝑟3 𝑟

(a,d) 1 1

(a,e) 1 1

(f,c) 0 1

(g,f) 1 1

(i,f) 1 1

(i,j) 0 1

(e,f) 1 0

(a,i) 1 0

(e,j) 1 0

r

r

positive instances:
edges in KG = 𝐸𝑟

negative instances:
non-edges (sample)

Rule 𝑟1 𝑋, 𝑋1 ∧ 𝑟2 𝑋1, 𝑋2 ∧ 𝑟3 𝑋2, 𝑌 → 𝑟 𝑋, 𝑌 and 
associated clause-edge vectorKG:

a-j are entities
r, r1, r2, r3 are relations  

𝑟1 𝑎, 𝑏 ∧ 𝑟2 𝑏, 𝑐 ∧ 𝑟3 𝑐, 𝑑 is true and
𝑟 𝑎, 𝑑 is true 

𝐶1 𝑋, 𝑌

𝑎𝑖1
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LP to learn KG rules

min
𝑤,𝜉

෍

𝑖:𝑦𝑖=1

𝜉𝑖 + τ෍

𝑘∈𝐾

neg𝑘𝑤𝑘

𝜉𝑖 + σ𝑘∈𝐾 𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, (𝑡𝑖, ℎ𝑖) ∈ 𝐸𝑟

෍

𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶

𝑤𝑘 ∈ 0,1 , 𝑘 ∈ 𝐾

loss on positive instances loss on negative instances

cover positives

complexity bound

select clause k or not

Minimize error for weighted collection of rules:

value of scoring fn.
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Model details

- Er = set edges labeled by r, and (ti, hi)= th edge in Er

- wk variable gives weight for rule k; wk > 0 implies rule k is chosen
- aik is a constant = Ck(ti, hi)
- ck is a constant = 1+ rule length
- C is a parameter bounding weighted complexity of chosen rules
- τ is a parameter, negk is a constant

Modeling – Use all positive facts for a relation + sample some negative
facts for the LP model

Algorithmic issues – Use simple shortest path heuristics to find
relational paths, and associated rules – Iterate over different values of
tau and complexity

Code available at: https://github.com/IBM/LPRules
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Column generation

Step 0 – Fix an initial complexity and tau value

Step 1 – Use simple heuristics to create an initial collection of rules

Step 2 – Set up LP model and solve it

Step 3 – Obtain dual values of LP model

Step 4 – Dual values indicate which facts are “well-covered” andwhich
are not. Heuristically generate new rules that “cover” facts that are not
well-covered.

Step 5 – Repeat Steps 2 – 4 till termination criterion
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Sizes of datasets

Neuro-symbolic methods take a long time on FB15k-237 and cannot
handle YAGO3-10
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Experiments (accuracy)

†We could not run RNNLogic on FB15k-237 and report numbers taken
from Qu et al. (2021)
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Running time + number of rules

Avg number of rules per relation and wall clock running time on a 60
core machine
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Accuracy versus Complexity tradeoff

Change in MRR with change in average rules per relation
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LPRules + rules from other codes

MRR values using rules generated by AnyBURL and RNNLogic
(experiments A-D)

A – Use other rule-based code
B – Take rules and weights and use in our prediction function
C – Recalculate weights using complexity bound
D – Add our rules and recalculate weights
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Bayesian Network Structure Learning

BayesianNetwork: Directedacyclic graph (DAG) representing conditional
probability relationships between variables

X1

X3

X4

X2

X1

X3

X4

X2

dag directed cycle

P (X1, X2, X3, X4) = P (X4|X1)P (X3|X1, X2)P (X2|X1)P (X1)

BNSL Problem - Learn DAG from data:
DP methods: Koivisto, Sood ’04, Silander, Myllymäki ’06
A* search: Yuan, Malone ’13
Branch-and-bound: Campos, Ji ’11
IP based solver GOBNILP: Bartlett, Cussens ’13, ’17
GOBNILP is a state-of-the-art method: Malone et. al. ’17
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Causal Graphs/Causal BN

�GraphicalModelswheredirectededges represent causal relationships� DAG encodes structural equations

Directed Acyclic Graph (Linear) Structural equations

⇔


xA = ϵA
xB = ϵB
xC = bCAxA + bCExE + ϵC
xD = bDBxB + bDExE + ϵD
xE = ϵE

In a BN,X → Y → Z andX ← Y ← Z are indistinguishable.
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Creating causal graphs

1 0 1 0

0 1 1 1

1 1 1 0

0 1 1 1

0 0 0 1

X1 X2 X3 X4

X1 X2

X3

X4

Foster, Ipeirotis 2022
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Score decompositions for BNSL

Score of DAG is sum of scores of “in-stars” (inward directed star)

X1

X3

X4

X2

X1
X4

X3

X1

X2

X1

X2

X1

C4,{1}

C3,{1,2}

C2,{1}
C1,φ
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Score calculation

Score of each“in-star” is calculated from data

X1

X3

X4

X2

X1
X4

X3

X1

X2

X1

X2

X1

C4,{1}

C3,{1,2}

C2,{1}
C1,φ

1 0 1 1

0 1 0 1

1 0 1 1

0 1 0 1

1 0 1 1

X1 X2 X3 X4
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MIP for score based approach

MIP has one variable per in-star, equations choosing one in-star per
node, and cluster inequalities preventing cycles.
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Opt. formulations

Notation: Node set - V = {1, . . . , n}, P (i) = set of parent sets of i.

MIP (parent set variables):

max
∑
i∈V

∑
P∈P (i)

ci,Pzi,P

∑
P∈P (i)

zi,P = 1, ∀i ∈ V

∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V ∗

zi,P ∈ {0, 1}

Jaakkola, Sontag, Globerson, Meila ’10: cluster constraints(*)
Bartlett, Cussens ’13, 17: IP + software (GOBNILP)
Grotschel, Junger, Reinelt ’85: Acyclic subgraph polytope
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Latent Variables

Goal: Learn causal network structures in the presence of latent vars.

X1

X3

X4

X2

We use ancestral acyclic directed mixed graphs (with directed +
bidirected edges) as models of data with latent confounders.

Chen, Dash, Gao ’21: MIP formulation & first exact score-based
method to find optimal AADMG for continuous Gaussian variables.
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Ancestral graphs (AGs)

� DAGs are not closed under marginalization!

Ancestral graphs (Richardson and Spirtes ’02)

� Include all DAGs and are closed
under marginalization� Properties:
No directed cycles
(a→ b→ . . .→ a)
No almost directed cycles
(a↔ b→ c→ . . .→ a)
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Continuous Guassian distributions

(Linear) Structural equations

⇔


xA = ϵA
xB = ϵB
xC = bCAxA + ϵC
xD = bDBxB + ϵD
cov(ϵC, ϵD) = ΩCD

If ϵA − ϵD are normally distributed random variables, then x has a
multivariate normal distribution with covariance matrix Σ given by

(I −B)−1Ω(I −B)−T
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Forbidden structures

X1

X3

X4

X2

directed cycle

X1

X3

X4

X2

almost directed cycle

X1

X3

X4

X2

bow X1

X3

X4

X2

rooted arborescence +
bidirected component
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Learning methods

Constraint-based methods:� Apply conditional independence test on the data to infer the graph
structure: FCI (Sprites et al., ’00), cFCI (Ramsey et al., ’12)

Score-based methods:�Optimize a scoring criterion thatmeasures the likelihoodof the graph:
GSMAG (Triantafillou and Tsamardinos, ’16)

Hybrid methods:� Use both a scoring criterion and conditional independence tests:
M3HC (Tsirlis et al., ’18), SPo (Bernstein et al., ’20), CCHM (Chobtham
and Constantinou, ’20)

Current score-based and hybrid methods are all greedy or local search
algorithms!
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Scoring a DMG

� The BIC score (Schwarz ’78) for graph G is given by

BICG = 2 ln(lG(Σ̂))− ln(N )(2|V | + |E|)

� The maximum log-likelihood ln(lG(Σ̂)) can be decomposed by c-
components in G (Nowzohour et al., ’17)

ln(lG(Σ̂)) = −
N

2

∑
D∈D

[
|D| ln(2π) + log(

|Σ̂GD
|∏

j∈paG(D) σ̂
2
Dj

)+

N − 1

N
tr(Σ̂−1

GD
SD − |paG(D) \D|)

]

district = component defined by bidirected edges
c-component = district + in-edges per node in district
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Decomposition into c-components

Ancestral ADMG Districts

c-components

� We obtain a (BIC) score-maximizing ancestral ADMG for a set of
continuous variables that follow a multivariate Gaussian distribution.
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Score decomposition for AADMG

Score of AADMG is sum of scores of c-components

X1

X3

X4

X2

X1
X4

X3

X1
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X1

C4,{1}

C{{2,3},{1},{1}}

C1,φ
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Approach

Our work: Learn an AADMG with maximum score from c-components
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X2
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34



MIP formulation

Let C be set of all c-components, and let D(C) be the district of a c-
component C.

MIP to find optimal AADMG:

max
∑
c∈C

sCzC∑
C:i∈D(C)

zC = 1, ∀i ∈ V

G(z) has no directed and almost directed cycles
zC ∈ {0, 1}
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Cutting planes to avoid cycles

Cluster Inequalities:∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V

X1

X3

X4

X2
X3

X1

X2

X1

X3

X4

X2

X1

X3
X2

Bicluster inequalities: (wi,j =
∑

C:i↔j∈D(C) zC)∑
v∈S\{i,j}

∑
P :P∩S=∅

zv,P +
∑

P 1:P 1∩S=∅

∑
P 2:P 2∩S=∅

zi,j,P 1,P 2 ≥ wi,j
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Cutting planes generation

� Karger’s (’93) random contraction algorithm for min-cut problems:
Randomly contract edge ij with probability ∝ edge weight

� Separation heuristic for cluster inequalities:
- Let µk(S) denote the LHS of the cluster inequality at iteration k and

wk
ij = µk({i}) + µk({j})− µk({i, j}), ∀i, j

- At iteration k, randomly contract edge ij with probability ∝ wk
ij

- Remove nodes i and j, create a pseudo-node i′ and replace all
occurrences of i and j in the original graph by the pseudo-node
- Repeat until µk({i}) < 1 for some i⇒ a violated cluster inequality

� Similar separation heuristic for bi-cluster inequalities
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Numerical Experiments
• Test set 1:

1. Randomly generated DAGs with 20 nodes
2. l = 2,4,6 variables set to be latent
3. d = remaining observed variables
4. A sample of N = 1000/10, 000 realizations of observed variables

per instance

• Candidate c-components:

1. Single-node districts with up to three parents
2. Two-node districts with up to one parent each node

• Compared methods:

1. AGIP: our IP model
2. DAGIP: our IP model with only single-node districts
3. M3HC: a greedy hybrid method by Tsirlis et al. (2018)
4. FCI: an exact constraint-based method by Sprites et al. (2000)
5. cFCI: an exact constraint-based method by Ramsey et al. (2012)
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Quality of formulation

20-node graphs; d = number of observed nodes, l = number of latent
variables (removed from graph),N = number of samples.

(d, l,N )
Avg # bin vars Avg # bin vars Avg pruning Avg root Avg soln.
before pruning after pruning time (s) gap (%) time (s)

(18, 2, 1000) 59229 4116 19.1 0.65 60.4
(16, 4, 1000) 39816 3590 13.6 0.43 41.0
(14, 6, 1000) 20671 1788 3.9 0.54 8.9
(18, 2, 10000) 59229 9038 33.0 0.67 323.2
(16, 4, 10000) 39816 7378 21.4 0.53 215.4
(14, 6, 10000) 20671 3786 6.4 0.56 47.2
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Results for varying number of latent vars.

d = 18, l = 2, 4, 6,N = 10, 000,
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Current work

� Find optimal bow-free/arid graphs (supersets of AADMGs) using MIP

Use BSNL formulation, but extra variables for c-components with > 1
node districts and no bows

MIP (parent set variables):

max
∑
i∈V

∑
P∈P (i)

ci,Pzi,P

∑
P∈P (i)

zi,P = 1, ∀i ∈ V

∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V ∗

zi,P ∈ {0, 1}
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Sparse instances

Dataset Ground Truth AADMG Bow-free Bhattacharya

0 -17741.6 -17741.6 -17741.6 -17765.1
1 -17508.5 -17508.5 -17508.5 -17511.9
2 -17872.5 -17871.2 -17871.2 -17872.5
3 -19055.6 -19093.6 -19055.6 -19123.7
4 -17888.1 -17884.1 -17881.6 -17908.4
5 -18584.9 -18595.5 -18584.9 -18625.4
6 -17791.2 -17790.1 -17789.5 -17795.6
7 -18964.8 -19010.8 -18964.8 -20438.8
8 -17562.1 -17562.1 -17562.1 -17565.6
9 -17627.9 -17655.9 -17627.9 -17681.6

Scores for sparse randomly generated datasets
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Method Precision Recall
skeleton dir. bidir. skeleton dir bdir

AADMG 0.906 0.711 0.450 0.950 0.818 0.283
Bow-free 0.969 0.812 0.633 0.975 0.873 0.517
Bhattacharya 0.830 0.749 0.179 0.949 0.774 0.383

Average results
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Medium density instances

Dataset Ground Truth AADMG Bow-free Bhattacharya LP-heuristic

0 -19057.4 -19169.2 -19117.4 -19071.4 -19061.3
1 -19802.3 -20082.1 -19916.3 -19830.9 -19825.3
2 -20606.4 -21074.8 -20857.5 -20613.9 -20623.2
3 -21178.7 -21332.9 -21267.9 -21207.7 -21190.7
4 -20865.8 -20993.5 -20962.1 -20876.5 -20870.1
5 -18846.5 -19031.6 -18936.4 -18848.3 -18855.4
6 -21268.7 -21405.1 -21347.0 -21716.6 -21288.2
7 -18906.2 -18924.9 -18921.7 -18927.6 -18908.4
8 -22152.7 -22517.5 -22320.3 -22226.1 -22189.1
9 -21059.0 -21118.6 -21100.4 -21110.3 -21070.5
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Method Precision Recall
skeleton dir. bidir. skeleton dir bdir

AADMG 0.840 0.442 0.100 0.693 0.488 0.050
Bow-free 0.837 0.336 0.083 0.732 0.383 0.034
Bhattacharya 0.799 0.641 0.388 0.946 0.783 0.398
LP-heuristic 0.812 0.424 0.367 0.858 0.589 0.074
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Open questions

� How does one deal with the exponentially many variables

� Find valid inequalities for bounded indegree acyclic graphs

Cussens, Jarvisalo, Korhonen, Bartlett ’17: detailed studyof associated
polytopes
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