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Lecture 3 Outline

� Symbolic regression

�MINLP models

� Combining reasoning and regression

� Applications to real scientific data

� Polynomial optimization

� Numerical Experiments
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Derivable scientific discovery

Goal: Given experimental data, discover interpretable model in a
symbolic form consistent with background theory

NNs:
- good for discovery of patterns and relations in data
- drawback: “black-box” models

Standard regression:
- the functional form is given, discovery = parameter fitting

Symbolic regression:
- the functional form is not given but is instead composed from the data
- models are more “interpretable” and require less data
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Regression

Linear Regression: f (x) is a linear function c1x1 + c2x2 + · · · + cnxn

Symbolic Regression: Given X1, . . . ,Xk ∈ Rn and Y 1, . . . , Y k ∈ R, find
a function f (x) composed of list of input operators (e.g., {+,−,×,÷})
and arbitrary constants such that Y i ≈ f (Xi).

Early work
- Connor,Taylor(’77), Langley (’81)

Genetic Programing
- Koza(’92), Schmidt, Lipson (’09,’10) - Eureqa

Mixed-integer nonlinear programming
- Cozad (’14), Horesh, Liberti, Avron (’16), Cozad, Sahinidis (’18)
- Austel, Dash, Gunluk, Horesh, Liberti, Nannicini, Schieber (’17)

Other methods for physics problems:
- Udrescu, Tegmark (’19,’20) – AI Feynman
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Expression tree

f (m,x, ω) = mx2ω2 +
ω

mx

Nodes are labeled by: binary
and unary operators (such as
+,−,×, log), variables, and
constants

Edges link these entities in a
way that is consistent with a
prescribed grammar

÷

×

𝑥𝑚×

𝜔𝜔𝑥𝑥

×

× 𝜔

+

×

𝑓(𝑚, 𝜔, 𝑥) = 𝑚𝑥2𝜔2 +
𝜔

𝑚𝑥

+

𝑚

𝐿1 𝐿2

𝐿1= 𝑚𝑥2𝜔2

𝐿2 =
𝜔

𝑚𝑥

L-monomial treeFull expression tree
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Genetic Programming

×÷

𝑥𝑥 𝜔

+

×

+

𝑚

𝑚 𝑥

𝑚𝑥2𝜔2𝑚𝑥 +
𝜔

𝑥

Initial population

×

𝜔𝜔𝑥𝑥

×

×

𝑚 ÷

+

𝑥

𝑥𝜔

𝑚 + 𝑥 𝑥 +
𝜔

𝑥

Koza ’88
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Genetic Programming

×÷

𝑥𝑥 𝜔

+

×

+

𝑚

𝑚 𝑥
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×

𝜔𝜔𝑥𝑥

×

×

𝑚 ÷

+

𝑥

𝑥𝜔

𝑚 + 𝑥 𝑥 +
𝜔

𝑥

÷

+

𝑥

𝑥𝜔

𝑥 +
𝜔

𝑥

Reproduction

Recombination/
Crossover

÷

𝑥𝑥 𝜔

+

×

𝑚

𝑚𝑥 + 𝑥2𝜔2

×

𝜔𝑚

𝑥

×

𝜔𝜔𝑥𝑥

×

×

𝑚

new generation
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Genetic Programming

÷

𝑥𝑏 𝜔𝑎

Program parse trees

if

𝑚 ( if  (> 𝑎 𝑏 )  (𝑚) (÷ 𝜔 𝑥) )
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MINLP formulation

Binary variables choose locations of operators in non-leaf nodes of the
expression tree and locations of variables and constants in leaf nodes

Continuous variables used for constant values and to calculate the
value of the generated function and to compute error.
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AI-Descartes

Cornelio, Dash, Josephson, Goncalves, Austel, Clarkson, Megiddo, Horesh,
Combining data and theory for derivable scientific discovery with AI-Descartes.
Nature Comm. 2023

Numerical
data 

Formula Symbolic 
discovery

Reasoning

Background 
theory

Ordered list 
of 

hypotheses

Re-ranked
list of 

hypotheses

Combine symbolic regression and formal reasoning

- Learn candidate formulas from data (symbolic regression)
- Provide a proof of derivability of a candidate formula OR
- Calculate how close a formula is to a derivable formula.
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L-monomial tree representation

L-monomial = hxa1
1 xa2

2 · · ·xan
n where the powers can be positive and

negative integers, and h is a constant

÷

×

𝑥𝑚×

𝜔𝜔𝑥𝑥

×

× 𝜔

+

×

𝑓(𝑚, 𝜔, 𝑥) = 𝑚𝑥2𝜔2 +
𝜔

𝑚𝑥

+

𝑚

𝐿1 𝐿2

𝐿1= 𝑚𝑥2𝜔2

𝐿2 =
𝜔

𝑚𝑥

L-monomial treeFull expression tree
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New MINLP formulation

Weenumerate L-monomial expression trees, prunepotentially redundant
ones (e.g.,L1/L2 = L3) and solve anMINLP for each tree (using BARON)

The MINLP has variables p for independent feature powers, z for
position of constants (whether it is 1 or a different number for an L-
monomial), and h for constant values

min
∑
i∈I

(Y (i) − fh,p,z,T (X(i))2

s.t. − δ ≤ pi ≤ δ for i = 1, . . . ,mn

− Ωzi + (1− zi) ≤ hi ≤ Ωzi + (1− zi) for i = 1, . . . ,m

m∑
i=1

zi ≤ k

z ∈ {0, 1}m, p ∈ Zmn
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Results
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Reasoning

1 - Constraints

Check if candidate formulas
satisfy constraints, eg
- Monotonicity
- Conditions at the limit
- Nonnegativity

2 - Derivability

Derive a formula from axioms
defining a background theory (use
KeYmaera X)

3 - Reasoning measures

βr
∞ = max1≤i≤m

{
|f (Xi)− fB(Xi)|

|fB(Xi)|

}
= Relative error between f (induced
from data) and a derivable formula
deducible from the axioms fB

Pointwise reasoning error: S =
datapoints
Generalization reasoning error: S
contains datapoints
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Kepler’s third law of planetary motion

p =

√
4π2d3

G(m1 +m2)

Background Theory

K1. center of mass definition

K2. distance between bodies

K3. gravitational force

K4. centrifugal force

K5. force balance

K6. period definition

K7. non-negativity constraints
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Kepler’s third law of planetary motion
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Langmuir’s adsorption equation

This describes the amount of
adsorbtion of gas molecules on
a solid surface (“loading”) as a
function of the pressure of the gas.

q

qmax
=

Ka · p
1 +Ka · p

- p = gas pressure
- q = loading on surface
- qmax = maximum loading
-Ka = adsorption strength
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Langmuir’s adsorption equation

Background theory
K - CONSTRAINTS

Work using reasoning to check for constraint satisfaction:
- Scott, Panju, Ganesh ’21: LGML
- Ashok, Scott, Wetzel, Panju, Ganesh ’21: LGGA

We allow background theory to contain variables not present in data.
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Results
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Langmuir results

f2 and g2 are derivable with KeyMaera. g5, g7 satisfy the constraints and
are derivable from the two-site theory, but we cannot derive them.
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Restricting the function space

Many formulas can be expressed as sums of ratios of polynomials.

Assume background knowledge can be be expressed in terms of
polynomial equations and inequalities

Learning formulas that are rational polynomial expressions can be
formulated in terms of polynomial optimization.

AI-Hilbert: Cory-Wright, El Khadir, Cornelio, Dash, Horesh ’23
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Polynomial optimization

Let p(x), q1(x), q2(x), . . . , qm(x) be polynomials.

p(x) = q1(x)
2 + q2(x)

2 + · · · qm(x)2 ⇒ p(x) ≥ 0

Hilberts thm:

p(x) quadratic, and p(x) ≥ 0 ⇒ p(x) = q1(x)
2 + q2(x)

2 + · · · qm(x)2

Artin’s thm:

p(x) ≥ 0 ⇒ q0(x)
2p(x) = q1(x)

2 + q2(x)
2 + · · · qm(x)2
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Polynomial optimization

Putinar’s Positivestellensatz: Consider the basic (semi)algebraic sets

G := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}
H := {x ∈ Rn : h1(x) = 0, . . . hn(x) = 0}

where gi, hj are polynomials, and G satisfies the Archimedean property.
Then

f (x) ≥ 0 for all x ∈ G ∩H
if and only if

f (x) = α0(x) +

m∑
i=1

(αi(x))
2gi(x) +

n∑
j=1

βj(x)hj(x).
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Example: Kepler

Kepler’s third law p =

√
4π2(d1 + d2)3

G(m1 +m2)
,

p - rotational period, d1, d2 distances to common center of mass,m1,m2

masses,G = 6.6743× 10−11m3kg−1s−2 universal gravitational constant

Axioms:

d1m1 − d2m2 = 0

(d1 + d2)
2Fg −Gm1m2 = 0

Fc −m2d2w
2 = 0

Fc − Fg = 0

wp = 1
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Solution of Kepler

min
n∑
i=1

|q(xi)|,

q is solution polynomial, {xi}4i=1 is a set of observations.
Searching over the deg-5 polynomials q derivable using deg-6
certificates results in MIP with 18958 continuous variables.

Solutionm1m2Gp2 −m1d1d
2
2 −m2d

2
1d2 − 2m2d1d

2
2 = 0

Certificate:

− d22p
2w2,

− p2,

d21p
2 + 2d1d2p

2 + d22p
2,

d21p
2 + 2d1d2p

2 + d22p
2,

m1d1d
2
2pw +m2d

2
1d2pw + 2m2d1d

2
2pw +m1d1d

2
2 +m2d

2
1d2 + 2m2d1d

2
2,
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Conclusion

Strengths:
- Few data points
- Real data
- Logical reasoning to distinguish the correct formula from a set of
plausible formulas with similar error on the data

Limitations:
- Scalability
- Rely on correctness & completeness of background theory

Main challenges:
- Need more real-data datasets (with realistic amount/type of noise)
- Need more numerical datasets with associated background theory

Future directions:
- Consider restricted classes of axioms and derived formulas
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