Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Ellen Vitercik Stanford University

How to integrate machine learning into algorithm design?

- Algorithm configuration
 - How to tune an algorithm's parameters?
- Algorithm selection
 - Given a variety of algorithms, which to use?
- Algorithm design

Can machine learning guide algorithm discovery?

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Routing

Manufacturing

Scheduling

Planning

Finance

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

CPX PARAM NODEFILEIND 100 CPX PARAM TRELIM 160 CPX PARAM NODELIM 101 CPX PARAM TUNINGDETTILIM 160 CPX PARAM NODESEL 102 CPX PARAM TUNINGDISPLAY 162 CPX PARAM NUMERICALEMPHASIS 102CPX PARAM TUNINGMEASURE 163 CPX_PARAM_NZREADLIM 103 CPX_PARAM_TUNINGREPEAT 164 CPX PARAM OBIDIF 104 CPX PARAM TUNINGTILIM 165 CPX_PARAM_OBJLLIM 105 CPX_PARAM_VARSEL 166 CPX_PARAM_OBJULIM 105 CPX_PARAM_WORKDIR 167 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_WORKMEM 168 CPX PARAM PERIND 110 CPX PARAM WRITELEVEL 169 CPX PARAM PERLIM 111 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPXPARAM_DistMIP_Rampup_Duration 128 CPX_PARAM_POLISHTIME CPXPARAM_LPMethod 136 (deprecated) 116 CPXPARAM_MIP_Cuts_BQP 38 CPX_PARAM_POPULATELIM 117 CPXPARAM_MIP_Cuts_LocalImplied 77 CPX PARAM PPRIIND 118 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM MIP_Cuts_ZeroHalfCut 170 CPX_PARAM_PREDUAL 119 CPXPARAM_MIP_Limits_CutsFactor 52 CPX_PARAM_PREIND 120 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP Limits Solutions 79 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPXPARAM MIP Limits StrongCand 154 CPX_PARAM_PROBE 123 CPXPARAM_MIP_Limits_StrongIt 154 CPX_PARAM_PROBEDETTIME 124 CPXPARAM_MIP_Limits_TreeMemory 160 CPX_PARAM_PROBETIME 124 CPXPARAM_MIP_OrderType 91 CPX_PARAM_QPMAKEPSDIND 125 CPXPARAM_MIP_Pool_AbsGap 146 CPX_PARAM_QPMETHOD 138 CPXPARAM_MIP_Pool_Capacity 147 CPX PARAM OPNZREADLIM 126 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX PARAM SOLNPOOLAGAP 146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX PARAM SOLUTIONTYPE 152

CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156

CPX_PARAM_THREADS 157

CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM_Sifting_Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM Tune DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM Tune TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX PARAM FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX PARAM NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCQCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:

Instances solved in past are similar to future instances...

In practice, we have data about the application domain

Existing research

2000 2023

Existing research

Automated algorithm configuration and selection

[Gupta, Roughgarden, ITCS'16; Balcan, Nagarajan, Vitercik, White, COLT'17; ...]

Learning-augmented algorithms

[Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurIPS'18; ...]

Sample complexity of revenue maximization

[Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; ...]

Applied research

Theory research

2000

2023

ML + algorithm design: Potential impact

Example: integer programming

- Used heavily throughout industry and science
- Many different ways to incorporate learning into solving
- Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

- In '16-'17, FCC held a \$19.8 billion radio spectrum auction
 - Involves solving huge graph-coloring problems

- SATFC uses algorithm configuration + selection
- Simulations indicate SATFC saved the government billions

Plan for tutorial

- **1** Theoretical guarantees
 - a. Statistical guarantees for algorithm configuration
 - b. Online algorithm configuration
- 2 Applied techniques
 - a. Graph neural networks
 - b. Reinforcement learning

Plan for tutorial

- **1** Theoretical guarantees
 - a. Statistical guarantees for algorithm configuration
 - b. Online algorithm configuration
- 2 Applied techniques
 - a. Graph neural networks
 - b. Reinforcement learning

Gupta, Roughgarden, ITCS'16 Balcan, DeBlasio, Dick, Kingsford, Sandholm, **Vitercik**, STOC'21 Balcan, Prasad, Sandholm, **Vitercik**, NeurIPS'21 Balcan, Prasad, Sandholm, **Vitercik**, NeurIPS'22

Running example: Sequence alignment

Goal: Line up pairs of strings

Applications: Biology, natural language processing, etc.

Input: Two sequences S and S'

Output: Alignment of S and S'

$$S = A C T G$$

 $S' = G T C A$

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing:

(# matches) – ρ_1 · (# mismatches) – ρ_2 · (# indels) – ρ_3 · (# gaps)

$$S = A C T G$$

 $S' = G T C A$

Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is considerable disagreement among molecular biologists about the correct choice" [Gusfield et al. '94]

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTPE-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KAGROUND-COMMOND Ground-truth alignment of protein sequences

G<mark>RTCP</mark>---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKC<mark>TP</mark>EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with **poorly-tuned** parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKC<mark>TP</mark>EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with **poorly-tuned** parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTPEVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2' Reference alignment A_2

3. Find parameter setting w/ good avg performance over T

Runtime, solution quality, etc.

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2' Reference alignment A_2

3. Find parameter setting w/ good avg performance over T

On average, output alignment is close to reference alignment

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2' Reference alignment A_2

3. Find parameter setting w/ good avg performance over T

Key question:

How to find parameter setting with good avg performance?

Key question:

How to find parameter setting with good avg performance?

E.g., for sequence alignment: algorithm by Gusfield et al. ['94]

Many other generic search strategies E.g., Hutter et al. [JAIR'09, LION'11], Ansótegui et al. [CP'09], ...

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2^\prime Reference alignment A_2

3. Find parameter setting w/ good avg performance over T

Key question (focus of this section):

Will that parameter setting have good future performance?

Key question (focus of this section):

Will that parameter setting have good future performance?

Generalization

Key question (focus of this section):

Good performance on **average** over **training set** implies good **future** performance?

Greedy algorithms

Gupta, Roughgarden, ITCS'16 ←

First to ask question for algorithm configuration

Clustering

Balcan, Nagarajan, V, White, COLT'17 Garg, Kalai, NeurIPS'18 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Search

Sakaue, Oki, NeurlPS'22

Numerical linear algebra

Bartlett et al., COLT'22

And many other areas...

This section: Main result

Key question (focus of this section):

Good performance on **average** over **training set** implies good **future** performance?

Answer this question for any parameterized algorithm where:

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...

This section: Main result

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...

Algorithmic performance on fixed input

Piecewise constant

Piecewise linear

Piecewise ...

Example: Sequence alignment

Distance between algorithm's output given S, S' and ground-truth alignment is p-wise constant

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18 Balcan, Prasad, Sandholm, V, NeurIPS'21 Balcan, Prasad, Sandholm, V, NeurIPS'22

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, V, STOC'21

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, V, EC'18

Ties to a long line of research on machine learning for revenue maximization

Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16; ...

Primary challenge

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Applications
- 2. Online algorithm configuration

Model

 \mathbb{R}^d : Set of all parameters

 \mathcal{X} : Set of all inputs

Example: Sequence alignment

 \mathbb{R}^3 : Set of alignment algorithm parameters

 \mathcal{X} : Set of sequence pairs

$$S = A C T G$$

 $S' = G T C A$

One sequence pair $x = (S, S') \in \mathcal{X}$

Algorithmic performance

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x$ E.g., runtime, solution quality, distance to ground truth, ...

Assume $u_{\rho}(x) \in [-1,1]$

Can be generalized to $u_{\rho}(x) \in [-H, H]$

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Generalization bounds

Key question: For any parameter setting ρ , is average utility on training set close to expected utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \leq ?$$

Empirical average utility Expected utility

Good **average empirical** utility — Good **expected** utility

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - a. Example: Sequence alignment
 - b. Dual function definition
 - iii. Main result
 - iv. Applications
- 2. Online algorithm configuration

Sequence alignment algorithms

Lemma:

For any pair S,S' algorithm's output is fixed across all parameters in region

$$S = A C T G$$
 $S' = G T C A$

$$A - - C T G$$

$$- G T C A -$$

$$\rho_1$$

Sequence alignment algorithms

Lemma:

Defined by $(\max\{|S|, |S'|\})^3$ hyperplanes

For any pair S, S', there's a partition of \mathbb{R}^3 's.t. in any region, algorithm's output is fixed across all parameters in region

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm's output and ground-truth alignment

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - a. Example: Sequence alignment
 - b. Dual function definition
 - iii. Main result
 - iv. Applications
- 2. Online algorithm configuration

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^d\} \quad \text{"Primal" function class}$

Typically, prove guarantees by bounding $\emph{complexity}$ of $\mathcal U$

Challenge: U is gnarly

E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions $u_{
 ho}$
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes

```
u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x
\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^d\} \quad \text{"Primal" function class}
```

```
u_{x}^{*}(\boldsymbol{\rho}) = \text{utility as function of parameters}
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
"Dual" function class
```

- Dual functions have simple, Euclidean domain
- ullet Often have ample structure can use to bound complexity of ${\mathcal U}$

Piecewise-structured functions

Dual functions $u_x^*: \mathbb{R}^d \to \mathbb{R}$ are piecewise-structured

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedyalgorithm
configuration

Computational biology algorithm configuration

Voting mechanism configuration

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Applications
- 2. Online algorithm configuration

Intrinsic complexity

"Intrinsic complexity" of function class $\mathcal G$

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: \mathcal{Y} \to \{-1,1\}$)

E.g., linear separators

Size of the largest set $S \subseteq Y$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ $VCdim(\mathcal{F}) \geq 3$

Size of the largest set $S \subseteq Y$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$

 $VCdim(\mathcal{F}) \geq 3$

VCdim({Linear separators in \mathbb{R}^d }) = d + 1

Size of the largest set $S \subseteq Y$ that can be labeled in all $2^{|S|}$ ways by functions in F

Mathematically, for $S = \{y_1, ..., y_N\}$, $\left| \left\{ \begin{pmatrix} f(y_1) \\ \vdots \\ f(y_N) \end{pmatrix} : f \in \mathcal{F} \right\} \right| = 2^N$

Pseudo-dimension

Complexity measure for real-valued function classes \mathcal{G} (Classes of functions $g: \mathcal{Y} \to [-1,1]$)

E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\{y_1, ..., y_N\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_1, ..., z_N \in \mathbb{R}$, all 2^N above/below patterns achieved by functions in \mathcal{G}

Example: $G = Affine functions in <math>\mathbb{R}$

 $Pdim(\mathcal{G}) \geq 2$

Can also show that $Pdim(G) \leq 2$

Pseudo-dimension of \mathcal{G}

```
Size of the largest set \{y_1, ..., y_N\} \subseteq \mathcal{Y} s.t.:
for some targets\ z_1, ..., z_N \in \mathbb{R},
all 2^N above/below patterns achieved by functions in \mathcal{G}
```

Mathematically,

$$\left| \left\{ \begin{pmatrix} \mathbf{1}_{\{g(y_1) \ge z_1\}} \\ \vdots \\ \mathbf{1}_{\{g(y_N) \ge z_N\}} \end{pmatrix} : g \in \mathcal{G} \right\} \right| = 2^N$$

Sample complexity using pseudo-dim

In the context of algorithm configuration:

- $\mathcal{U} = \{u_{\rho} : \rho \in \mathbb{R}^d\}$ measure algorithm **performance**
- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{Pdim}(\mathcal{U})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- With probability at least 1δ over $x_1, ..., x_N \sim \mathcal{D}, \forall \rho \in \mathbb{R}^d$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \le \epsilon$$

Empirical average utility

Expected utility

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right)$ implies WHP $\forall \boldsymbol{\rho}$, $|\operatorname{avg}$ utility over training set - exp utility $|\leq \epsilon|$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Theorem:

$$Pdim(\mathcal{U}) = \tilde{O}((VCdim(\mathcal{F}^*) + Pdim(\mathcal{G}^*)) \log k)$$

Primal function class $\mathcal{U} = \{u_{\rho} | \rho \in \mathbb{R}^d\}$

Next time

- **1** Theoretical guarantees
 - a. Statistical guarantees for algorithm configuration
 - i. Proof of main theorem
 - ii. Lots of applications
 - b. Online algorithm configuration
- 2 Applied techniques
 - a. Graph neural networks overview

Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Part 2

Ellen Vitercik
Stanford University

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Automated parameter tuning procedure

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2^\prime Reference alignment A_2

3. Find parameter setting w/ good avg performance over T

Key question (focus of this section):

Will that parameter setting have good future performance?

Primal & dual classes

 $u_{\rho}(x) = \textbf{utility}$ of algorithm parameterized by $\rho \in \mathbb{R}^d$ on input x *E.g., runtime, solution quality, etc.*

$$\mathcal{U} = \{u_{\boldsymbol{\rho}}: \mathcal{X} \to \mathbb{R} \mid \boldsymbol{\rho} \in \mathbb{R}^d\}$$
 "Primal" function class

Set of problem instances, e.g., integer programs

 $u_{x}^{*}(\boldsymbol{\rho}) = \text{utility as function of parameters}$ $u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)$ $u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)$ $u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)$ "Dual" function class

Piecewise-structured functions

Dual functions $u_x^*: \mathbb{R}^d \to \mathbb{R}$ are piecewise-structured

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedyalgorithm
configuration

Computational biology algorithm configuration

Voting mechanism configuration

Sample complexity

In the context of algorithm configuration:

- $\mathcal{U} = \{u_{\rho} : \rho \in \mathbb{R}^d\}$ measure algorithm **performance**
- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{Pdim}(\mathcal{U})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- With probability at least 1δ over $x_1, ..., x_N \sim \mathcal{D}, \forall \rho \in \mathbb{R}^d$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \le \epsilon$$

Empirical average utility

Expected utility

Pseudo-dimension of \mathcal{G}

```
Size of the largest set \{y_1, ..., y_N\} \subseteq \mathcal{Y} s.t.:
for some targets\ z_1, ..., z_N \in \mathbb{R},
all 2^N above/below patterns achieved by functions in \mathcal{G}
```

Mathematically,

$$\left| \left\{ \begin{pmatrix} \mathbf{1}_{\{g(y_1) \ge z_1\}} \\ \vdots \\ \mathbf{1}_{\{g(y_N) \ge z_N\}} \end{pmatrix} : g \in \mathcal{G} \right\} \right| = 2^N$$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right)$ implies WHP $\forall \boldsymbol{\rho}$, $|\operatorname{avg}$ utility over training set - exp utility $|\leq \epsilon|$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Theorem:

$$\operatorname{Pdim}(\mathcal{U}) = \tilde{O}\big((\operatorname{VCdim}(\mathcal{F}^*) + \operatorname{Pdim}(\mathcal{G}^*))\log k\big)$$

Primal function class $\mathcal{U} = \{u_{\rho} | \rho \in \mathbb{R}^d\}$

Each boundary function $f: \mathbb{R}^d \to \{-1,1\}$ splits \mathbb{R}^d into 2 regions

Given D boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} f_1(\boldsymbol{\rho}) \\ \vdots \\ f_D(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

Given D boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} f_1(\boldsymbol{\rho}) \\ \vdots \\ f_D(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq \mathbf{?}$$

Note: Sauer's lemma tells us that for any D points $\rho_1, ..., \rho_D \in \mathbb{R}^d$

$$\left| \left\{ \begin{pmatrix} f(\boldsymbol{\rho}_1) \\ \vdots \\ f(\boldsymbol{\rho}_D) \end{pmatrix} : f \in \mathcal{F} \right\} \right| \le (eD)^{\text{VCdim}(\mathcal{F})}$$

This is where transitioning to the dual comes in handy!

For any problem instances $x_1, ..., x_N$ and targets $z_1, ..., z_N \in \mathbb{R}$,

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{\rho}(x_1) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{\rho}(x_N) - z_N) \end{pmatrix} : \rho \in \mathbb{R}^d \right\} \right| \leq ?$$

Switching to the dual functions,

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq \mathbf{?}$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

The duals $u_{x_1}^*, ..., u_{x_N}^*$ correspond to Nk boundary functions in \mathcal{F} How many regions $R_1, ..., R_M$ in \mathbb{R}^d ? $M \leq (eNk)^{\text{VCdim}(\mathcal{F}^*)}$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho}), \forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{\chi_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{\chi_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho})$, $\forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(g_1(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(g_N(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho})$, $\forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right|$$

$$\leq (eNk)^{\operatorname{VCdim}(\mathcal{F}^*)} (eN)^{\operatorname{Pdim}(\mathcal{G}^*)}$$
Number of regions
Number of sign patterns within each region

Pdim(
$$\mathcal{U}$$
) equals largest N s.t. $2^{N} \leq (eNk)^{\text{VCdim}(\mathcal{F}^{*})}(eN)^{\text{Pdim}(\mathcal{G}^{*})}$, so $\text{Pdim}(\mathcal{U}) = \tilde{O}\big((\text{VCdim}(\mathcal{F}^{*}) + \text{Pdim}(\mathcal{G}^{*}))\log k\big)$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Applications
 - a. Sequence alignment
 - b. Greedy algorithms
 - c. Cutting planes
- 2. Online algorithm configuration

Piecewise constant dual functions

Lemma:

Utility is piecewise constant function of parameters

Sequence alignment guarantees

Theorem: Training set of size

$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right) = \tilde{O}\left(\frac{\log(\max \operatorname{seq. length})}{\epsilon^2}\right)$$
 implies WHP $\forall \boldsymbol{\rho}$, |avg utility over training set - exp utility| $\leq \epsilon$

Sequence alignment guarantees

Theorem: Training set of size

$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right) = \tilde{O}\left(\frac{\log(\max \operatorname{seq. length})}{\epsilon^2}\right)$$

$$G = \text{constant}$$

functions in \mathbb{R}^3
 $Pdim(G^*) = O(1)$

$$\mathcal{F} = \text{hyperplanes in } \mathbb{R}^3$$

$$\text{VCdim}(\mathcal{F}^*) = O(1)$$

(max sequence length)³

implies WHP $\forall \rho$, avg utility over training set - exp utility $\leq \epsilon$

$$u_{(S,S')}^*(\boldsymbol{\rho})$$
 ρ_1

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Applications
 - a. Sequence alignment
 - b. Greedy algorithms
 - c. Cutting planes
- 2. Online algorithm configuration

Maximum weight independent set (MWIS)

Problem instance:

- Graph G = (V, E)
- *n* vertices with weights $w_1, ..., w_n \ge 0$

Goal: find subset $S \subseteq [n]$

- Maximizing $\sum_{i \in S} w_i$
- No nodes $i, j \in S$ are connected: $(i, j) \notin E$

Greedy heuristic:

Greedily add vertices v in decreasing order of $\frac{w_v}{(1+\deg(v))}$ Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS'16]:

Greedily add nodes in decreasing order of $\frac{w_v}{(1+\deg(v))^{\rho'}}$, $\rho \geq 0$

[Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Given a MWIS instance x, $u_x^*(\rho)$ = weight of IS algorithm returns

Theorem [Gupta, Roughgarden, ITCS'16]:

 $u_{x}^{*}(\rho)$ is piecewise-constant with at most n^{2} pieces

Given a MWIS instance x, $u_x^*(\rho)$ = weight of IS algorithm returns

- Weights $w_1, ..., w_n \ge 0$
- $\deg(i) + 1 = k_i$

Algorithm parameterized by ρ would add node 1 before 2 if:

$$\frac{w_1}{k_1^{\rho}} \ge \frac{w_2}{k_2^{\rho}} \quad \iff \quad \rho \ge \log_{k_2} \frac{w_2}{k_1}$$

Heuristic prioritizes node 2 Heuristic prioritizes node 1
$$\log_{\frac{k_2}{k_1}} \frac{w_2}{w_1}$$

- $\binom{n}{2}$ thresholds per instance
- ullet Partition ${\mathbb R}$ into regions where algorithm's output is fixed

- $\binom{n}{2}$ thresholds per instance
- Partition $\mathbb R$ into regions where algorithm's output is fixed $\Rightarrow u_{\rho}(x)$ is constant

MWIS guarantees

Theorem: Training set of size

$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right) = \tilde{O}\left(\frac{\log n}{\epsilon^2}\right)$$
 implies WHP $\forall \rho$, |avg utility over training set - exp utility| $\leq \epsilon$

MWIS guarantees

Theorem: Training set of size

$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*) \log k}{\epsilon^2}\right) = \tilde{O}\left(\frac{\log n}{\epsilon^2}\right)$$

$$\mathcal{G} = \text{constant functions} \quad \mathcal{F} = \text{thresholds} \quad n^2$$

$$\operatorname{Pdim}(\mathcal{G}^*) = O(1) \quad \operatorname{VCdim}(\mathcal{F}^*) = O(1)$$

implies WHP $\forall \rho$, avg utility over training set - exp utility $\leq \epsilon$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Applications
 - a. Sequence alignment
 - b. Greedy algorithms
 - c. Cutting planes
- 2. Online algorithm configuration

Cutting planes

Additional constraints that:

- Separate the LP optimal solution
 - Tightens LP relaxation to prune nodes sooner
- Don't separate any integer point

Cutting planes

Modern IP solvers add cutting planes through the B&B tree "Branch-and-cut"

Responsible for breakthrough speedups of IP solvers Cornuéjols, Annals of OR '07

Challenges:

- Many different types of cutting planes
 - Chvátal-Gomory cuts, cover cuts, clique cuts, ...
- How to choose which cuts to apply?

Chvátal-Gomory cuts

We study the canonical family of Chvátal-Gomory (CG) cuts

CG cut parameterized by $\rho \in [0,1)^m$ is $\lfloor \rho^T A \rfloor z \leq \lfloor \rho^T b \rfloor$

Important properties:

- CG cuts are valid
- Can be chosen so it separates the LP opt

Key challenge

Cut (typically) remains in LPs throughout entire tree search

Every aspect of tree search depends on LP guidance *Node selection, variable selection, pruning, ...*

Tiny change in cut can cause major changes to tree

Lemma: $O(\|A\|_{1,1} + \|b\|_1 + n)$ hyperplanes partition $[0,1)^m$ into regions s.t. in any one region, B&C tree is fixed

Tree size is a piecewise-constant function of $\rho \in [0,1)^m$

Lemma: $O(\|A\|_{1,1} + \|b\|_1 + n)$ hyperplanes partition $[0,1)^m$ into regions s.t. in any one region, B&C tree is fixed

Proof idea:

- CG cut parameterized by $\rho \in [0,1)^m$ is $\lfloor \rho^T A \rfloor z \leq \lfloor \rho^T b \rfloor$
- For any $m{
 ho}$ and column $m{a}_i$, $[m{
 ho}^Tm{a}_i] \in [-\|m{a}_i\|_1$, $\|m{a}_i\|_1]$
- For each integer $k_i \in [-\|a_i\|_1, \|a_i\|_1]$:

$$[\boldsymbol{\rho}^T \boldsymbol{a}_i] = k_i \text{ iff } k_i \leq \boldsymbol{\rho}^T \boldsymbol{a}_i < k_i + 1$$

• In any region defined by intersection of halfspaces:

$$([\boldsymbol{\rho}^T\boldsymbol{a}_1],...,[\boldsymbol{\rho}^T\boldsymbol{a}_m])$$
 is constant

 $O(||A||_{1,1}+n)$

halfspaces

Beyond Chvátal-Gomory cuts

For more complex families, boundaries can be more complex

Cutting plane guarantees

Theorem: Training set of size

$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right) = \tilde{O}\left(\frac{m\log(\|A\|_{1,1} + \|\boldsymbol{b}\|_1 + n)}{\epsilon^2}\right)$$

implies WHP $\forall \rho$, avg utility over training set - exp utility $\leq \epsilon$

Cutting plane guarantees

Theorem: Training set of size

$$\mathcal{G} = \text{constant functions in } \mathbb{R}^m$$

 $\operatorname{Pdim}(\mathcal{G}^*) = \mathcal{O}(m)$

implies WHP $\forall \rho$, avg utility over training set - exp utility $\leq \epsilon$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial? E.g., MWIS:

Day 1: ρ_1 Day 2: ρ_2 Day 3: ρ_3

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Online model

Over T timesteps t = 1, ..., T:

- 1. Learner chooses parameter setting ρ_t
- 2. Nature (or adversary \overline{w}) chooses problem instance x_t
- 3. Learner obtains **reward** $u_{\rho_t}(x_t) = u_{x_t}^*(\rho_t)$
- 4. Learner observes function $u_{x_t}^*$ (full information feedback)
 - Simplest setting so we'll start here
 - Will look at other feedback models later (e.g., bandit)

Online model

Over T timesteps t = 1, ..., T:

- 1. Learner chooses parameter setting ρ_t
- 2. Nature (or adversary $\overline{\boldsymbol{v}}$) chooses **problem instance** x_t
- 3. Learner obtains **reward** $u_{\rho_t}(x_t) = u_{x_t}^*(\rho_t)$
- 4. Learner observes function $u_{x_t}^*$ (full information feedback)

Goal: Minimize **regret**
$$\max_{\rho} \sum_{t=1}^{T} u_{\rho}(x_t) - \sum_{t=1}^{T} u_{\rho_t}(x_t)$$

Ideally, $\frac{1}{T}$ · (Regret) $\rightarrow 0$ as $T \rightarrow \infty$

On average, competing with best algorithm in hindsight

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - iii. Semi-bandit model

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has **linear regret**

Round 1:

Dual function: Utility on instance x_1 as function of ho

Dual function: Utility on instance x_1' as function of ρ

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret

Round 1:

Adversary chooses x_1 or x_1' with equal probability

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret

Round 1: Round 2:

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret

Round 1: Round 2:

Repeatedly halves optimal region

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret

Round 1: Round 2:

Repeatedly halves optimal region

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has **linear regret**

Round 1: Round 2:

Repeatedly halves optimal region

Learner's expected reward: $\frac{T}{2}$ Reward of best ρ in hindsight: TExpected regret = $\frac{T}{2}$

Smoothed adversary: MWIS

Sub-linear regret is possible if adversary has a "shaky hand":

- Node weights $w_1, ..., w_n$ and degrees $k_1, ..., k_n$ are stochastic
- Joint density of (w_i, w_j, k_i, k_j) is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, '17]; Balcan, Dick, Vitercik [FOCS'18]; Balcan et al. [UAI'20]; ...

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - iii. Semi-bandit model

Dispersion

Mean adversary concentrates discontinuities near maximizer ρ^* Even points very close to ρ^* have low utility!

 $u_{\chi_1}^*, \dots, u_{\chi_T}^* : \underline{B(\mathbf{0}, 1)} \to [-1, 1]$ are (w, k)-dispersed at point ρ if: Can be generalized to any bounded subset

Dispersion

Mean adversary concentrates discontinuities near maximizer ρ^* Even points very close to ρ^* have low utility!

 $u_{x_1}^*, ..., u_{x_T}^*: B(\mathbf{0}, 1) \to [-1, 1]$ are (w, k)-dispersed at point ρ if: ℓ_2 -ball $B(\rho, w)$ contains discontinuities for $\leq k$ of $u_{x_1}^*, ..., u_{x_T}^*$

Ball of radius w about ρ contains 2 discontinuities $\Rightarrow (w, 2)$ -dispersed at ρ

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - a. Algorithm
 - b. Regret bound
 - c. Bandit feedback
 - d. Proving dispersion holds
 - iii. Semi-bandit model

Exponentially weighted forecaster

[Freund, Schapire, JCSS'97, Cesa-Bianchi & Lugosi '06, ...]

input: Learning rate $\eta > 0$

initialization: $U_0(\rho) = 0$ is the constant function

for t = 1, ..., T:

choose distribution q_t over \mathbb{R}^d such that $q_t(\rho) \propto \exp(\eta U_{t-1}(\rho))$

Exponentially upweight high-performance parameter settings

choose parameter setting $\rho_t \sim q_t$, receive reward $u_{x_t}^*(\rho_t)$ observe utility function $u_{x_t}^*: \mathcal{P} \to [0,1]$ update $U_t = U_{t-1} + u_{x_t}^*$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - a. Algorithm
 - b. Regret bound
 - c. Bandit feedback
 - d. Proving dispersion holds
 - iii. Semi-bandit model

Regret

Regret =
$$\sum_{t=1}^{T} u_{x_t}^*(\boldsymbol{\rho}^*) - \sum_{t=1}^{T} u_{x_t}^*(\boldsymbol{\rho}_t)$$

Theorem: Suppse $u_{x_1}^*, ..., u_{x_T}^* : B(\mathbf{0}, 1) \to [0,1]$ are:

- 1. Piecewise *L*-Lipschitz
- 2. (w, k)-dispersed at ρ^*

EWF has regret
$$O\left(\sqrt{Td\log\frac{1}{w}} + TLw + k\right)$$

When is this a good bound?

For
$$w = \frac{1}{L\sqrt{T}}$$
 and $k = \tilde{O}(\sqrt{T})$, regret is $\tilde{O}(\sqrt{Td})$

$$W_t = \int_{B(\mathbf{0},\mathbf{1})} \exp(\eta U_t(\boldsymbol{\rho})) d\boldsymbol{\rho} \qquad \left(U_t(\boldsymbol{\rho}) = \sum_{\tau=1}^t u_\tau^*(\boldsymbol{\rho}) \right)$$

Goal: Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$
 $\leq \frac{W_T}{W_0} \leq$ Something in terms of ALG = $\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}_t)$

$$\leq \frac{W_T}{W_0} \leq$$

Something in terms of ALG =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}_t)$$

Learner's performance (ALG) is sufficiently large compared to OPT

$$W_t = \int_{B(\mathbf{0},1)} \exp(\eta U_t(\boldsymbol{\rho})) d\boldsymbol{\rho} \qquad \left(u_t(\boldsymbol{\rho}) = \sum_{\tau=1}^t u_\tau^*(\boldsymbol{\rho}) \right)$$

Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$

Goal: Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$
 $\leq \frac{W_T}{W_0} \leq \exp(\operatorname{ALG}(e^{\eta} - 1))$

$$W_t = \int_{B(\mathbf{0},1)} \exp(\eta U_t(\boldsymbol{\rho})) d\boldsymbol{\rho} \qquad \left(u_t(\boldsymbol{\rho}) = \sum_{\tau=1}^t u_\tau^*(\boldsymbol{\rho}) \right)$$

Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$

Goal: Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$
 $\leq \frac{W_T}{W_0} \leq \exp(\text{ALG}(e^{\eta} - 1))$

$$W_T = \int_{B(\mathbf{0},1)} \exp\left(\eta \sum_{t=1}^T u_t^*(\boldsymbol{\rho})\right) d\boldsymbol{\rho} \ge \int_{B(\boldsymbol{\rho}^*,w)} \exp\left(\eta \sum_{t=1}^T u_t^*(\boldsymbol{\rho})\right) d\boldsymbol{\rho}$$

Goal: Something in terms of OPT =
$$\sum_{t=1}^{T} u_t^*(\boldsymbol{\rho}^*)$$
 $\leq \frac{W_T}{W_0} \leq \exp(\operatorname{ALG}(e^{\eta} - 1))$ $W_T = \int_{B(\mathbf{0},1)} \exp\left(\eta \sum_{t=1}^{T} u_t^*(\boldsymbol{\rho})\right) d\boldsymbol{\rho} \geq \int_{B(\boldsymbol{\rho}^*,w)} \exp\left(\eta \sum_{t=1}^{T} u_t^*(\boldsymbol{\rho})\right) d\boldsymbol{\rho}$ $\geq \int_{B(\boldsymbol{\rho}^*,w)} \exp(\eta(\operatorname{OPT} - k - TLw)) d\boldsymbol{\rho}$ $= \operatorname{Vol}(B(\boldsymbol{\rho}^*,w)) \exp(\eta(\operatorname{OPT} - k - TLw))$

$$\frac{\operatorname{Vol}(B(\boldsymbol{\rho}^*, w)) \exp(\eta(\operatorname{OPT} - k - TLw))}{\operatorname{Vol}(B(\boldsymbol{0}, 1))} \le \frac{W_T}{W_0} \le \exp(\operatorname{ALG}(e^{\eta} - 1))$$

Rearranging and setting
$$\eta = \sqrt{\frac{d}{T} \log \frac{1}{w}}$$
:
$$\operatorname{Regret} = \operatorname{OPT} - \operatorname{ALG} = O\left(\sqrt{Td \log \frac{1}{w}} + TLw + k\right)$$

Matching lower bound

Theorem: For any algorithm, exist PW-constant u_1^* , ..., u_T^* s.t.:

Algorithm's regret is
$$\Omega\left(\inf_{(w,k)} \sqrt{Td\log\frac{1}{w}} + k\right)$$

Inf over all (w,k)-dispersion parameters that $u_1^*, ..., u_T^*$ satisfy at ${m
ho}^*$

Upper bound =
$$O\left(\inf_{(w,k)} \sqrt{Td \log \frac{1}{w}} + k\right)$$

Lemma [Weed et al., COLT'16]:

Exist distributions μ_U , μ_L over $\{u^{(0)}, u^{(1)}\}$ s.t. for any algorithm,

$$\max_{\mu_{U},\mu_{L}} \max_{\rho \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} u_{t}^{*}(\rho) - \sum_{t=1}^{T} u_{t}^{*}(\rho_{t}) \right] \geq \frac{\sqrt{T}}{32}$$

 $u_1^*,...,u_T^*$ drawn from worse of μ_U,μ_L

Lemma [Weed et al., COLT'16]:

Exist distributions μ_U , μ_L over $\{u^{(0)}, u^{(1)}\}$ s.t. for any algorithm,

$$\max_{\mu_{U},\mu_{L}} \max_{\rho \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} u_{t}^{*}(\rho) - \sum_{t=1}^{T} u_{t}^{*}(\rho_{t}) \right] \geq \frac{\sqrt{T}}{32}$$

Any $\rho > 0.5$ is optimal under μ_U , any $\rho \leq 0.5$ is optimal under μ_L

Worst case instance:

1. Draw u_1^* , ..., $u_{T-\sqrt{T}}^*$ from worse of $\mu_{\underline{U}}$, μ_L and define:

$$\rho^* = \underset{\rho \in \left\{\frac{1}{4}, \frac{3}{4}\right\}}{\operatorname{argmax}} \sum_{t=1}^{1-\sqrt{1}} u_t^*(\rho)$$

2. Define $u_t^*(\rho) = \mathbf{1}_{\{|\rho - \rho^*| \le \frac{1}{10}\}}$ for $t > T - \sqrt{T}$

Note: $\rho^* \in \operatorname{argmax} \sum_{t=1}^T u_t^*(\rho)$

Analysis:

- Regret $\geq \frac{\sqrt{T}}{64}$ (follows from lemma by Weed et al., [COLT'16])
- Lower bound follows from fact that $\frac{\sqrt{T}}{64} = \Omega \left(\inf_{(w,k)} \sqrt{T \log \frac{1}{w}} + k \right)$

Only last $k = \sqrt{T}$ functions have discontinuities in

$$\left[\rho^* - \frac{1}{8}, \rho^* + \frac{1}{8}\right]$$

 $\Rightarrow u_1^*, \dots, u_T^*$ are $\left(w = \frac{1}{8}, k = \sqrt{T}\right)$ -dispersed around ρ^*

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - a. Algorithm
 - b. Regret bound
 - c. Bandit feedback
 - d. Proving dispersion holds
 - iii. Semi-bandit model

Bandit feedback

Over T timesteps t = 1, ..., T:

- 1. Learner chooses parameter setting ρ_t
- 2. Nature (or adversary $\overline{\boldsymbol{v}}$) chooses **problem instance** x_t
- 3. Learner obtains **reward** $u_{\rho_t}(x_t) = u_{x_t}^*(\rho_t)$
- 4. Learner only observes $u_{x_t}^*(\boldsymbol{\rho}_t)$ (not entire function)

Bandit feedback

Theorem: If $u_1^*, ..., u_T^* : B(\mathbf{0}, 1) \to [0,1]$ are:

- 1. Piecewise *L*-Lipschitz
- 2. (w, k)-dispersed at ρ^*

The UCB algorithm has regret $\tilde{O}\left(\sqrt{Td\left(\frac{1}{w}\right)^d} + TLw + k\right)$

• If
$$d=1$$
, $w=\frac{1}{\sqrt[3]{T}}$, and $k=\tilde{O}\left(T^{2/3}\right)$, regret is $\tilde{O}\left(LT^{2/3}\right)$

• If
$$w = T^{\frac{d+1}{d+2}-1}$$
, $k = \tilde{O}(T^{\frac{d+1}{d+2}})$, then regret is $\tilde{O}(T^{\frac{d+1}{d+2}}(\sqrt{d3^d} + L))$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - a. Algorithm
 - b. Regret bound
 - c. Bandit feedback
 - d. Proving dispersion holds
 - iii. Semi-bandit model

Smooth adversaries and dispersion

Adversary chooses thresholds $u_t^* \colon [0,1] \to \{0,1\}$ Discontinuity τ "smoothed" by adding $Z \sim N(0,\sigma^2)$

Lemma: WHP,
$$\forall w, u_1^*, ..., u_T^*$$
 are $\left(w, \tilde{O}\left(\frac{Tw}{\sigma} + \sqrt{T}\right)\right)$ -dispersed

Corollary:
$$w = \frac{\sigma}{\sqrt{T}} \Rightarrow$$
 Full information regret = $O\left(\sqrt{T \log \frac{T}{\sigma}}\right)$

Simple example: knapsack

Problem instance:

- n items, item i has value v_i and size s_i
- Knapsack with capacity K

Goal: find most valuable items that fit

Algorithm (parameterized by $\rho \geq 0$):
Add items in decreasing order of $\frac{v_i}{s_i^{\rho}}$ [Gupta and Roughgarden, ITCS'16]

Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:

- 1. Each v_i independent from s_i
- 2. All (v_i, v_j) have κ -bounded joint density,

W.h.p., for any
$$\alpha \geq \frac{1}{2}, u_1^*, \dots, u_T^*$$
 are $\left(\tilde{O}\left(\frac{T^{1-\alpha}}{\kappa}\right), \tilde{O}\left((\# \text{ items})^2 T^{\alpha}\right)\right)$ -dispersed

Corollary: Full information regret = $\tilde{O}\left((\# \text{ items})^2\sqrt{T}\right)$

More results for algorithm configuration

Under **no assumptions**, we show dispersion for Integer quadratic programming approximation algs

Based on semi-definite programming relaxations

- s-linear rounding [Feige & Langberg '06]
- Outward rotations [Zwick '99]
 - Both generalizations of Goemans-Williamson max-cut alg ['95]

Leverage algorithm's randomness to prove dispersion

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Online algorithm configuration
 - i. Worst-case instance
 - ii. Dispersion
 - iii. Semi-bandit model

Semi-bandit model

- Computing the entire function $u_t^*(
 ho)$ can be challenging
- Often, it's easy to compute interval in which $u_t^*(\rho_t)$ is constant
 - E.g., in IP, simple bookkeeping with CPLEX callbacks
- Semi-bandit model: learner learns $u_t^*(\rho_t)$ and interval

Balcan, Dick, Pegden [UAI'20]:

- Regret bounds that are nearly as good as full info
- Introduce a more general definition of dispersion

Outline (applied techniques)

1. GNNs overview

- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

GNN motivation

Main question:

How to utilize relational structure for better prediction?

Graph neural networks: First step

- Design features for nodes/links/graphs
- Obtain features for all training data

Graph neural networks: Objective

Idea:

- 1. Encode each node and its neighborhood with embedding
- 2. Aggregate set of node embeddings into graph embedding
- 3. Use embeddings to make predictions

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Encoding neighborhoods: General form

 $\boldsymbol{h}_{u}^{(0)} = \boldsymbol{x}_{u}$ (feature representation for node u)

In each round $k \in [K]$, for each node v:

1. **Aggregate** over neighbors

$$m_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in N(v) \right\} \right)$$
Neighborhood of v

Encoding neighborhoods: General form

 $\boldsymbol{h}_{u}^{(0)} = \boldsymbol{x}_{u}$ (feature representation for node u)

In each round $k \in [K]$, for each node v:

1. **Aggregate** over neighbors

$$\boldsymbol{m}_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ \boldsymbol{h}_{u}^{(k-1)} : u \in N(v) \right\} \right)$$

2. **Update** current node representation

$$\boldsymbol{h}_{v}^{(k)} = \text{COMBINE}^{(k)} \left(\boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{m}_{N(v)}^{(k)}\right)$$

The basic GNN

[Merkwirth and Lengauer '05; Scarselli et al. '09]

$$\mathbf{m}_{N(v)} = \text{AGGREGATE}(\{\mathbf{h}_u : u \in N(v)\}) = \sum_{u \in N(v)} \mathbf{h}_u$$

Aggregation functions

$$m_{N(v)} = AGGREGATE(\{h_u : u \in N(v)\}) = \bigoplus_{u \in N(v)} h_u$$

Other element-wise aggregators, e.g.: Maximization, averaging

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Weight sharing

Use the same aggregation functions for all nodes

Can generate encodings for previously unseen nodes & graphs!

Next time

1. Neural algorithmic alignment *GNNs for discrete optimization*

2. Reinforcement learning overview

3. Learning greedy heuristics with RL

4. Integer programming with GNNs

Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Part 3

Ellen Vitercik
Stanford University

Outline (applied techniques)

1. GNNs overview (recap)

- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Graph neural networks: Objective

Idea:

- 1. Encode each node and its neighborhood with embedding
- 2. Aggregate set of node embeddings into graph embedding
- 3. Use embeddings to make predictions

Encoding neighborhoods: General form

 $\boldsymbol{h}_{u}^{(0)} = \boldsymbol{x}_{u}$ (feature representation for node u)

In each round $k \in [K]$, for each node v:

1. **Aggregate** over neighbors

$$\boldsymbol{m}_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ \boldsymbol{h}_{u}^{(k-1)} : u \in N(v) \right\} \right)$$

2. **Update** current node representation

$$\boldsymbol{h}_{v}^{(k)} = \text{COMBINE}^{(k)} \left(\boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{m}_{N(v)}^{(k)}\right)$$

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Problem-solving approaches

- + Operate on raw inputs
- + Generalize on noisy conditions
- + Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

- + Trivially strong generalization
- + Compositional (subroutines)
- + Guaranteed correctness
- + Interpretable operations
- Input must match spec
- Not robust to task variations

Is it possible to get the best of both worlds?

Previous work

Previous work:

- Shortest path [Graves et al. '16; Xu et al., '19]
- Traveling salesman [Reed and De Freitas '15]
- Boolean satisfiability [Vinyals et al. '15; Bello et al., '16; ...]
- Probabilistic inference [Yoon et al., '18]

Ground-truth solutions used to drive learning Model has complete freedom mapping raw inputs to solutions

Neural graph algorithm execution

Key observation: Many algorithms share related **subroutines** E.g. Bellman-Ford,BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution

- Learn several algorithms simultaneously
- Provide intermediate supervision signals
 Driven by how a known classical algorithm would process the input

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
 - i. Example algorithms
 - ii. Experiments
 - iii. Additional motivation
 - iv. Additional research
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Breadth-first search

- Source node s
- Initial input $x_i^{(1)} = \begin{cases} 1 & \text{if } i = s \\ 0 & \text{if } i \neq s \end{cases}$

• Node is reachable from
$$s$$
 if any of its neighbors are reachable:
$$x_i^{(t+1)} = \begin{cases} 1 & \text{if } x_i^{(t)} = 1 \\ 1 & \text{if } \exists j \text{ s. t. } (j,i) \in E \text{ and } x_j^{(t)} = 1 \\ 0 & \text{else} \end{cases}$$

• Algorithm output at round $t: y_i^{(t)} = x_i^{(t+1)}$

Bellman-Ford (shortest path)

- Source node s
- Initial input $x_i^{(1)} = \begin{cases} 0 & \text{if } i = s \\ \infty & \text{if } i \neq s \end{cases}$
- \bullet Node is reachable from s if any of its neighbors are reachable Update distance to node as minimal way to reach neighbors

$$x_i^{(t+1)} = \min \left\{ x_i^{(t)}, \min_{(j,i) \in E} x_j^{(t)} + e_{ji}^{(t)} \right\}$$

Bellman-Ford: Message passing

Key idea (roughly speaking): Train GNN so that $h_u^{(t)} \approx x_u^{(t)}$, $\forall t$

(Really, so that a function of $\boldsymbol{h}_u^{(t)} \approx x_u^{(t)}$)

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
 - i. Example algorithms
 - ii. Experiments
 - iii. Additional motivation
 - iv. Additional research
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Shortest-path predecessor prediction

Improvement of max-aggregator increases with size It aligns better with underlying algorithm [Xu et al., ICLR'20]

Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously

• At each step t, concatenate relevant $x_i^{(t)}$ and $oldsymbol{y}_i^{(t)}$ values

Comparisons

- (no-reach): Learn Bellman-Ford alone
 - Doesn't simultaneously learn reachability
- (no-algo):
 - Don't supervise intermediate steps
 - Learn predecessors directly from input $x_i^{(1)}$

Shortest-path predecessor prediction

- (no-reach) results: positive knowledge transfer
- (no-algo) results: benefit of supervising intermediate steps

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
 - i. Example algorithms
 - ii. Experiments
 - iii. Additional motivation
 - iv. Additional research
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Key question

Key question in neural algorithmic alignment:

If we're just teaching a NN to imitate a classical algorithm...

Why not just run that algorithm?

Why use GNNs for algorithm design?

Classical algorithms are designed with **abstraction** in mind Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Abstractifying the core problem

- Assume we have real-world inputs ...but algorithm only admits abstract inputs
- Could try manually converting from one input to another

Attacking the core problem

- Alternatively, replace human feature extractor with NN
 - Still apply same combinatorial algorithm
- Issue: algorithms typically perform discrete optimization
 - Doesn't play nicely with gradient-based optimization of NNs

Algorithmic bottleneck

Second (more fundamental) issue: data efficiency

- Real-world data is often incredibly rich
- We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar Assumes it is perfect!

If there's insufficient training data to estimate the scalars:

- Alg will give a perfect solution
- ...but in a suboptimal environment

Encoder network *f*

• E.g., makes sure input is in correct dimension for next step

Processor network P

- Graph neural network
- Run multiple times (termination determined by a NN)

Decoder network g

Transform's GNNs output into algorithmic output

1. On abstract inputs, learn encode-process-decode functions

After training on abstract inputs, processor P:

- 1. Is aligned with computations of target algorithm
- 2. Admits useful gradients
- 3. Operates over high-dim latent space (better use of data)

2. Set up encode-decode functions for natural inputs/outputs

3. Learn parameters using loss that compares $\tilde{g}\left(P\left(\tilde{f}(x)\right)\right)$ to y

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
 - i. Example algorithms
 - ii. Experiments
 - iii. Additional motivation
 - iv. Additional research
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Additional research

Lots of research in the past few years! E.g.:

- How to achieve algorithmic alignment & theory guarantees
 - Xu et al., ICLR'20; Dudzik, Veličković, NeurIPS'22
- CLRS benchmark
 - Sorting, searching, dynamic programming, graph algorithms, etc.
 - Veličković et al. ICML'22; Ibarz et al. LoG'22; Bevilacqua et al. ICML'23
- Primal-dual algorithms
 - Numeroso et al., ICLR'23

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Learner interaction with environment

Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution $P(s' \mid s, a)$ Probability of entering state s' from state s after taking action a

Reward function $R: S \to \mathbb{R}$

Goal: Policy $\pi: S \to A$ that maximizes total (discounted) reward

Policies and value functions

Policy is a mapping from states to actions $\pi: S \to A$

Value function for a policy:

Expected sum of discounted rewards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid s_{0} = s, a_{t} = \pi(s_{t}), s_{t+1} \mid s_{t}, a_{t} \sim P\right]$$
Discount factor

Optimal policy and value function

Optimal policy π^* achieves the highest value for every state $V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$

Value function is written $V^* = V^{\pi^*}$

Several different ways to find π^*

- Value iteration
- Policy iteration

Challenge of RL

MDP(S, A, P, R):

- S: set of states (assumed for now to be discrete)
- A: set of actions
- Transition probability distribution $P(s_{t+1} \mid s_t, a_t)$
- Reward function $R: S \to \mathbb{R}$

RL twist: We don't know P or R, or too big to enumerate

Q-learning

Q functions:

Like value functions but defined over state-action pairs

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) Q^{\pi}(s',\pi(s'))$$

I.e., Q function is the value of:

- 1. Starting in state s
- 2. Taking action a
- 3. Then acting according to π

Q-learning

$$Q^{*}(s, a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) \max_{a'} Q^{*}(s', a')$$
$$= R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{*}(s')$$

 Q^* is the value of:

- 1. Starting in state s
- 2. Taking action a
- 3. Then acting optimally

Q-learning

(High-level) Q-learning algorithm

initialize $\hat{Q}(s, a) \leftarrow 0, \forall s, a$ repeat

Observe current state s and reward rTake action $a = \operatorname{argmax} \hat{Q}(s,\cdot)$ and observe next state s'Improve estimate \hat{Q} based on s,r,a,s'

Can use function approximation to represent \hat{Q} compactly $\hat{Q}(s,a)=f_{\theta}(s,a)$

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

RL for combinatorial optimization

Tons of research in this area

Travelling salesman

Bello et al., ICLR'17; Dai et al., NeurIPS'17; Nazari et al., NeurIPS'18; ...

Maximum cut

Dai et al., NeurIPS'17; Cappart et al., AAAI'19; Barrett et al., AAAI'20; ...

Bin packing

Hu et al., '17; Laterre et al., '18; Cai et al., DRL4KDD'19; Li et al., '20; ...

Minimum vertex cover

Dai et al., NeurlPS'17; Song et al., UAI'19; ...

This section: Example of a pioneering work in this space

Overview

Goal: use RL to learn new *greedy strategies* for graph problems Feasible solution constructed by successively adding nodes to solution

Input: Graph G = (V, E), weights w(u, v) for $(u, v) \in E$

RL state representation: Graph embedding

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
 - i. Examples: Min vertex cover and max cut
 - ii. RL formulation
 - iii. Experiments
- 5. Integer programming with GNNs

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in C} w(u,v)$$
 where $C = \{(u,v)\in E: u\in S, v\not\in S\}$

If w(u, v) = 1 for all $(u, v) \in E$:

$$\sum_{(u,v)\in\mathcal{C}} w(u,v) = 5$$

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in C} w(u,v)$$
 where $C = \{(u,v)\in E: u\in S, v\not\in S\}$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in\mathcal{C}} w(u,v)$$
 where $\mathcal{C}=\{(u,v)\in\mathcal{E}:u\in\mathcal{S},v\not\in\mathcal{S}\}$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
 - i. Example: Min vertex cover and max cut
 - ii. RL formulation
 - iii. Experiments
- 5. Integer programming with GNNs

Reinforcement learning formulation

State:

• Goal: encode partial solution $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$

E.g., nodes in independent set, nodes on one side of cut

Reinforcement learning formulation

State:

- Goal: encode partial solution $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$
- ullet Use GNN to compute graph embedding μ

Initial node features
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

Action: Choose vertex $v \in V \setminus S$ to add to solution

Transition (deterministic): For chosen $v \in V \setminus S$, set $x_v = 1$

Reinforcement learning formulation

Reward: r(S, v) is change in objective when transition $S \rightarrow (S, v)$

Policy (deterministic):
$$\pi(v|S) = \begin{cases} 1 & \text{if } v = \arg\max_{v' \notin S} \hat{Q}(\mu, v') \\ 0 & \text{else} \end{cases}$$

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
 - i. Example: Min vertex cover and max cut
 - ii. RL formulation
 - iii. Experiments
- 5. Integer programming with GNNs

Min vertex cover

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

2-approximation algorithm

Greedy algorithm from first few slides

Max cut

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

Goemans-Williamson algorithm

Greedy algorithm from first few slides

TSP

Uniform random points on 2-D grid

Paper's approach

- Initial subtour: 2 cities that are farthest apart
- Repeat the following:
 - Choose city that's farthest from any city in the subtour
 - Insert in position where it causes the smallest distance increase

[Rosenkrantz et al., SIAM JoC'77]

Runtime comparisons

CPLEX-1st: 1st feasible solution found by CPLEX

Min vertex cover visualization

Nodes seem to be selected to balance between:

- Degree
- Connectivity of the remaining graph

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs

Better branching order than x_1, x_2, x_3, x_4 ?

Better branching order than x_1, x_2, x_3, x_4 ? E.g., x_4, x_3, x_1, x_2

Chooses variables to branch on on-the-fly Rather than pre-defined order

At node j with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i=0$

VSP example:

Branch on the variable x_i that maximizes $\max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$

If score was
$$(z(j) - z_i^+(j))(z(j) - z_i^-(j))$$
 and $z(j) - z_i^+(j) = 0$: would lose information stored in $z(j) - z_i^-(j)$

Strong branching

Challenge: Computing $z_i^-(j)$, $z_i^+(j)$ requires solving a lot of LPs

- Computing all LP relaxations referred to as strong-branching
- Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching

Khalil et al. [AAAI'16], Alvarez et al. [INFORMS JoC'17], Hansknecht et al. [arXiv'18]

This paper: using a GNN

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research

Problem formulation

Goal: learn a policy $\pi(a_t \mid s_t)$

Probability of branching on variable a_t when solver is in state s_t

Approach (imitation learning):

- Run strong branching on training set of instances
- Collect dataset of (state, variable) pairs $S = \{(s_i, a_i^*)\}_{i=1}^N$
- Learn policy $\pi_{m{ heta}}$ with training set S

State encoding

State s_t of B&B encoded as a **bipartite graph** with **node** and **edge features**

State encoding

State s_t of B&B encoded as a **bipartite graph** with **node** and **edge features**

- Edge feature: constraint coefficient
- Example node features:
 - Constraints:
 - Cosine similarity with objective
 - Tight in LP solution?
 - Variables:
 - Objective coefficient
 - Solution value equals upper/lower bound?

GNN structure

1. Pass from variables \rightarrow constraints

GNN structure

1. Pass from variables → constraints

$$c_i \leftarrow f_C\left(c_i, \sum_{j:(i,j)\in E} g_C(c_i, v_j, e_{ij})\right)$$

2. Pass from constraints \rightarrow variables

$$v_j \leftarrow f_V \left(v_j, \sum_{i:(i,j) \in E} g_V(\boldsymbol{c}_i, \boldsymbol{v}_j, \boldsymbol{e}_{ij}) \right)$$

GNN structure

3. Compute distribution over variables

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research

Reliability pseudo-cost branching (RPB)

Rough idea:

- Goal: estimate $z(j) z_i^+(j)$ w/o solving the LP with $x_i = 1$
- Estimate = avg change after setting $x_i=1$ elsewhere in tree This is the "pseudo-cost"
- "Reliability": do strong branching if estimate is "unreliable"
 E.g., early in the tree

Default branching rule of SCIP (leading open-source solver): $\max\{\underline{\widetilde{\Delta}_i^+(j)}, 10^{-6}\} \cdot \max\{\underline{\widetilde{\Delta}_i^-(j)}, 10^{-6}\}$

Estimate of $z(j) - z_i^+(j)$

Estimate of $z(j) - z_i^-(j)$

Learning to rank approaches

- Predict which variable strong branching would rank highest
- Using a linear model instead of a GNN

- Khalil et al. [AAAI'16]:
 Use learning-to-rank algorithm SVM^{rank} [Joachims, KDD'06]
- Hansknecht et al. [arXiv'18]
 Use learning-to-rank alg lambdaMART [Burges, Learning'10]

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research

Set covering instances

Always train on "easy" instances

	1000 columns, 500 rows			1000 columns, 2000 rows			
		Easy			Hard		
Model	Time	Wins	Nodes	Time	Wins	Nodes	
FSB	$17.30 \pm 6.1\%$	0/100	$17 \pm 13.7\%$	$3600.00 \pm 0.0\%$	0/ 0	$n/a \pm n/a \%$	
RPB	$8.98 \pm 4.8\%$	0/100	54 ±20.8%	$1677.02 \pm 3.0\%$	4/65	$47299 \pm 4.9\%$	
TREES	$9.28 \pm 4.9\%$	0/100	$187 \pm 9.4\%$	$2869.21 \pm 3.2\%$	0/35	$59013\pm9.3\%$	
SVMRANK	$8.10 \pm 3.8\%$	1/100	$165 \pm 8.2\%$	$2389.92 \pm 2.3\%$	0 / 47	$42120\pm5.4\%$	
LMART	$7.19 \pm 4.2\%$	14/100	$167 \pm 9.0\%$	$2165.96 \pm 2.0\%$	0 / 54	$45319\pm3.4\%$	
GCNN	$6.59 \pm 3.1\%$	85 / 100	$134 \pm 7.6\%$	$1489.91 \pm 3.3\%$	66 / 70	$29981 \pm 4.9\%$	

Set covering instances

Set covering instances

- GNN is faster than SCIP default VSP (RPB)
- Performance generalizes to larger instances
- Similar results for auction design & facility location problems

		Easy			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes
FSB	$17.30 \pm 6.1\%$	0/100	$17 \pm 13.7\%$	$3600.00 \pm 0.0\%$	0/ 0	$n/a \pm n/a \%$
RPB	$8.98 \pm 4.8\%$	0/100	54 ±20.8%	$16\overline{77.02 \pm 3.0\%}$	4/65	$47299 \pm 4.9\%$
TREES	$9.28 \pm 4.9\%$	0/100	$187 \pm 9.4\%$	$2869.21 \pm 3.2\%$	0/35	$59013 \pm 9.3\%$
SVMRANK	$8.10 \pm 3.8\%$	1/100	$165 \pm 8.2\%$	$2389.92 \pm 2.3\%$	0 / 47	$42120\pm5.4\%$
LMART	$7.19 \pm 4.2\%$	14/100	$167 \pm 9.0\%$	$2165.96 \pm 2.0\%$	0 / 54	$45319 \pm 3.4\%$
GCNN	$6.59 \pm 3.1\%$	85 / 100	$134 \pm 7.6\%$	$1489.91 \pm 3.3\%$	66 / 70	$29981 \pm 4.9\%$

Max independent set instances

RPB is catching up to GNN on MIS instances

		Easy			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes
FSB	$23.58 \pm 29.9\%$	9/100	7 ±35.9%	$3600.00 \pm 0.0\%$	0/ 0	$n/a \pm n/a \%$
RPB	$8.77 \pm 11.8\%$	7 / 100	20 ±36.1%	$20\overline{45.61 \pm 18.3\%}$	22 / 42	$2675 \pm 24.0\%$
TREES	$10.75 \pm 22.1\%$	1/100	$76 \pm 44.2\%$	$3565.12 \pm 1.2\%$	0/ 3	$38296 \pm 4.1\%$
SVMRANK	$8.83 \pm 14.9\%$	2/100	$46 \pm 32.2\%$	$2902.94 \pm 9.6\%$	1 / 18	$6256 \pm 15.1\%$
LMART	$7.31 \pm 12.7\%$	30 / 100	$52 \pm 38.1\%$	$3044.94 \pm 7.0\%$	0/12	$8893 \pm 3.5\%$
GCNN	6.43 \pm 11.6%	51 / 100	43 ±40.2%	2024.37 \pm 30.6%	25 / 29	$2997 \pm 26.3\%$

Outline (applied techniques)

- 1. GNNs overview
- 2. Neural algorithmic alignment
- 3. Reinforcement learning overview
- 4. Learning greedy heuristics with RL
- 5. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research

Additional research

CPU-friendly approaches

Gupta et al., NeurIPS'20

Bipartite representation inspired many follow-ups

Nair et al., '20; Sonnerat et al., '21; Wu et al., NeurIPS'21; Huang et al. ICML'23; ...

Survey on *Combinatorial Optimization & Reasoning w/ GNNs*: Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Conclusions and future directions

Overview

- **1** Theoretical guarantees
 - a. Statistical guarantees for algorithm configuration
 - i. Broadly applicable theory for deriving generalization guarantees
 - i. Proved using connections between primal and dual classes
 - b. Online algorithm configuration
 - a. Impossible in the worst cases
 - b. Introduced dispersion to provide no-regret guarantees

Overview

- **1** Theoretical guarantees
 - a. Statistical guarantees for algorithm configuration
 - b. Online algorithm configuration
- 2 Applied techniques
 - a. Graph neural networks
 - i. Neural algorithmic alignment
 - ii. GNNs for variable selection in branch-and-bound
 - b. Reinforcement learning
 - i. Design new greedy heuristics for NP-hard problems

Future work: Tighter statistical bounds

WHP $\forall \boldsymbol{\rho}$, $|\mathbf{avg}|$ utility over training set – \mathbf{exp} utility $|\leq \epsilon|$ given training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}(\mathrm{Pdim}(\mathcal{G}^*) + \mathrm{VCdim}(\mathcal{F}^*)\log k)\right)$

k is often exponential

Can lead to large bounds

I expect this can sometimes be avoided! Would require more information about duals

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems...
 can sometimes lead to better single-task performance
- E.g., training reachability and shortest-paths (grey line)
 v.s. just training shortest-paths (yellow line)

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems...
 can sometimes lead to better single-task performance
- Can we understand theoretically why this happens?
 - For which sets of algorithms can we expect knowledge transfer?

Future work: Size generalization

Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS'17; Veličković, et al., ICLR'20; ...

Goal: eventually, solve problems no one's ever been able to solve

However, size generalization is not immediate! It depends on:

• The machine-learned algorithm

Is the algorithm scale sensitive?

Example [Xu et al., ICLR'21]:

- Algorithms represents by GNNs do generalize
- Algs represented by MLPs don't generalize across size

Future work: Size generalization

Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS'17; Veličković, et al., ICLR'20; ...

Goal: eventually, solve problems no one's ever been able to solve

However, size generalization is not immediate! It depends on:

- The machine-learned algorithm Is the algorithm scale sensitive?
- The problem instances

 As size scales, what features must be preserved?

Future work: Size generalization

Can you:

1. **Shrink** a set of big integer programs graphs

. . .

- 2. **Learn** a good algorithm on the **small** instances
- 3. **Apply** what you learned to the **big** instances?

Future work: ML as a toolkit for theory

Which algorithm classes to optimize over?

Classical algorithm design & analysis

O: Why are some machine-learned algs so dominant?

E.g., Dai et al. [NeurIPS'17] write that their RL alg discovered: "New and interesting" greedy strategies for MAXCUT and MVC "which intuitively make sense but have not been analyzed before," thus could be a "good assistive tool for discovering new algorithms."