Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Ellen Vitercik
Stanford University

How to integrate machine learning into algorithm design?

○

Algorithm configuration

How to tune an algorithm's parameters?
Algorithm selection
Given a variety of algorithms, which to use?
Algorithm design
Can machine learning guide algorithm discovery?

How to integrate machine learning into algorithm design?

○

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?
Algorithm design
Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (\& nonconvex) problems

Routing

Manufacturing

Scheduling

Planning

Finance

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters

- CPLEX has 170-page manual describing $\mathbf{1 7 2}$ parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

 CPX PARAM FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters

- CPLEX has 170-page manual describing $\mathbf{1 7 2}$ parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for routing problems likely not suited for schedulling

How to integrate machine learning into algorithm design?

- Algorithm configuration

How to tune an algorithm's parameters?
Algorithm selection
Given a variety of algorithms, which to use?

- Algorithm design

Can machine learning guide algorithm discovery?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:
Instances solved in past are similar to future instances...

In practice, we have data about the application domain

Routing problems a shipping company solves

In practice, we have data about the application domain

In practice, we have data about the application domain

Existing research

Constraint satisfaction

[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAl'01; ...]

Integer programming

[Hutter, Hoos, Leyton-Brown, CPAIOR '10; ...]

Economics (mechanism design)

[Likhodedov, Sandholm, AAAI '04, '05; ...]

Computational biology
[Majoros, Salzberg, Bioinformatics'04; ...]

Existing research

Automated algorithm configuration and selection
 [Gupta, Roughgarden, ITCS'16; Balcan, Nagarajan, Vitercilk, White, COLT'17; ...]
 Applied
 Learning-augmented algorithms
 [Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurIPS'18; ...]
 Sample complexity of revenue maximization
 [Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; ...]

ML + algorithm design: Potential impact

Example: integer programming

- Used heavily throughout industry and science
- Many different ways to incorporate learning into solving
- Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

- In '16-'17, FCC held a $\$ 19.8$ billion radio spectrum auction
- Involves solving huge graph-coloring problems

- SATFC uses algorithm configuration + selection
- Simulations indicate SATFC saved the government billions

Plan for tutorial

(1) Theoretical guarantees

a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

(2) Applied techniques

a. Graph neural networks
b. Reinforcement learning

Plan for tutorial

(1) Theoretical guarantees

a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

(2) Applied techniques

a. Graph neural networks
b. Reinforcement learning

Gupta, Roughgarden, ITCS'16
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercilk, STOC'21
Balcan, Prasad, Sandholm, Vitercilk, NeurlPS'21
Balcan, Prasad, Sandholm, Vitercilk, NeurlPS'22

Running example: Sequence alignment

Goal: Line up pairs of strings
Applications: Biology, natural language processing, etc.

Did you mean: vitercilk

Sequence alignment algorithms

Input: Two sequences S and S^{\prime}
Output: Alignment of S and S^{\prime}

$$
\begin{aligned}
& S=\mathrm{ACTC} \\
& S^{\prime}=\mathrm{G} \mathrm{~T} C \mathrm{~A}
\end{aligned}
$$

Sequence alignment algorithms

Standard algorithm with parameters $\rho_{1}, \rho_{2}, \rho_{3} \geq 0$:
Return alignment maximizing:
(\# matches) $-\rho_{1} \cdot$ (\# mismatches) $-\rho_{2} \cdot\left(\#\right.$ indels) $-\rho_{3} \cdot(\#$ gaps $)$

$$
\begin{aligned}
& S=\mathrm{ACTO} \\
& S^{\prime}=\mathrm{G} \mathrm{~T} C \mathrm{~A}
\end{aligned}
$$

Sequence alignment algorithms

Can sometimes access ground-truth, reference alignment
E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC

Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04
Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is considerable disagreement among molecular biologists about the correct choice" [Gusfield et al. '94]

$$
\begin{aligned}
& A-\quad \text { C T G } \\
& -\mathrm{G} \text { T C A - }
\end{aligned}
$$

Sequence alignment algorithms

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

Sequence alignment algorithms

Ground-truth alignment of protein sequences
GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with poorly-tuned parameters

Sequence alignment algorithms

Ground-truth alignment of protein sequences

Alignment by algorithm with poorly-tuned parameters
GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of "typical" inputs

3. Find parameter setting $\mathrm{w} /$ good avg performance over T

Runtime, solution quality, etc.

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of "typical" inputs

3. Find parameter setting $\mathrm{w} /$ good avg performance over T

On average, output alignment is close to reference alignment

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of "typical" inputs
3. Find parameter setting $w /$ good avg performance over T

Key question:

How to find parameter setting with good avg performance?

Automated parameter tuning procedure

Key question:

How to find parameter setting with good avg performance?
E.g., for sequence alignment: algorithm by Gusfield et al. ['94]

Many other generic search strategies
E.g., Hutter et al. [JAIR'09, LION'11], Ansótegui et al. [CP'09], ...

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of "typical" inputs
3. Find parameter setting $w /$ good avg performance over T

Key question (focus of this section):
Will that parameter setting have good future performance?

Automated parameter tuning procedure

Key question (focus of this section):

Will that parameter setting have good future performance?

Generalization

Key question (focus of this section):

Good performance on average over training set implies good future performance?

Greedy algorithms

Gupta, Roughgarden, ITCS'16
First to ask question for algorithm configuration

Clustering

Balcan, Nagarajan, V, White, COLT'17 Garg, Kalai, NeurlPS'18
Balcan, Dick, White, NeurIPS'18
Balcan, Dick, Lang, ICLR'20

Search

Sakaue, Oki, NeurlPS'22

Numerical linear algebra
Bartlett et al., COLT'22
And many other areas...

This section: Main result

Key question (focus of this section):

Good performance on average over training set implies good future performance?

Answer this question for any parameterized algorithm where: Performance is piecewise-structured function of parameters Piecewise constant, linear, quadratic, ...

This section: Main result

Performance is piecewise-structured function of parameters Piecewise constant, linear, quadratic, ...
Algorithmic
performance
on fixed input

Piecewise constant

Piecewise linear

Piecewise ...

Example: Sequence alignment

Distance between algorithm's output given S, S^{\prime}

 and ground-truth alignment is p -wise constant

Piecewise structure

Piecewise structure unifies seemingly disparate problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18
Balcan, Prasad, Sandholm, V, NeurIPS'21
Balcan, Prasad, Sandholm, V, NeurlPS'22

Clustering

Balcan, Nagarajan, V, White, COLT'17
Balcan, Dick, White, NeurIPS'18
Balcan, Dick, Lang, ICLR'20

Computational biology
Balcan, DeBlasio, Dick, Kingsford, Sandholm, V, STOC'21

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, V, EC'18

Ties to a long line of research on machine learning for revenue maximization Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16;

Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications
2. Online algorithm configuration

Model
\mathbb{R}^{d} : Set of all parameters
x : Set of all inputs

Example: Sequence alignment

\mathbb{R}^{3} : Set of alignment algorithm parameters
x : Set of sequence pairs

$$
\begin{aligned}
& S=\mathrm{ACTO} \\
& S^{\prime}=\mathrm{G} \mathrm{~T} C \mathrm{~A}
\end{aligned}
$$

One sequence pair $x=\left(S, S^{\prime}\right) \in \mathcal{X}$

Algorithmic performance

$u_{\boldsymbol{\rho}}(x)=$ utility of algorithm parameterized by $\boldsymbol{\rho} \in \mathbb{R}^{d}$ on input x E.g., runtime, solution quality, distance to ground truth, ...

Assume $u_{\rho}(x) \in[-1,1]$
Can be generalized to $u_{\rho}(x) \in[-H, H]$

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs

Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands
E.g., distribution over pairs of protein sequences

Generalization bounds

Key question: For any parameter setting $\boldsymbol{\rho}$, is average utility on training set close to expected utility?

Formally: Given samples $x_{1}, \ldots, x_{N} \sim \mathcal{D}$, for any $\boldsymbol{\rho}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right]\right| \leq ?
$$

Empirical average utility Expected utility
Good average empirical utility \Rightarrow Good expected utility

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
a. Example: Sequence alignment
b. Dual function definition
iii. Main result
iv. Applications
2. Online algorithm configuration

Sequence alignment algorithms

Lemma:

For any pair S, S^{\prime} algorithm's output is fixed across all parameters in region

Sequence alignment algorithms

Lemma:

Defined by (max $\left.\left\{|S|,\left|S^{\prime}\right|\right\}\right)^{3}$ hyperplanes
For any pair S, S^{\prime}, there's a partition of \mathbb{R}^{3} s.t. in any region, algorithm's output is fixed across all parameters in region

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters
Distance between algorithm's output and ground-truth alignment

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
a. Example: Sequence alignment
b. Dual function definition
iii. Main result
iv. Applications
2. Online algorithm configuration

Primal \& dual classes

$u_{\rho}(x)=$ utility of algorithm parameterized by $\boldsymbol{\rho} \in \mathbb{R}^{d}$ on input x $\mathcal{U}=\left\{u_{\boldsymbol{\rho}}: \mathcal{X} \rightarrow \mathbb{R} \mid \boldsymbol{\rho} \in \mathbb{R}^{d}\right\} \quad$ "Primal" function class

Typically, prove guarantees by bounding complexity of \mathcal{U}
Challenge: U is gnarly
E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions u_{ρ}
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal \& dual classes

$u_{\rho}(x)=$ utility of algorithm parameterized by $\boldsymbol{\rho} \in \mathbb{R}^{d}$ on input x $\mathcal{U}=\left\{u_{\boldsymbol{\rho}}: \mathcal{X} \rightarrow \mathbb{R} \mid \boldsymbol{\rho} \in \mathbb{R}^{d}\right\} \quad$ "Primal" function class
$u_{x}^{*}(\boldsymbol{\rho})=$ utility as function of parameters
$u_{x}^{*}(\boldsymbol{\rho})=u_{\rho}(x)$
$\mathcal{U}^{*}=\left\{u_{x}^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R} \mid x \in \mathcal{X}\right\} \quad$ "Dual" function class

- Dual functions have simple, Euclidean domain
- Often have ample structure can use to bound complexity of \mathcal{U}

Piecewise-structured functions

Dual functions $u_{x}^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are piecewise-structured

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedy
algorithm
configuration

Computational biology algorithm configuration

Voting mechanism configuration

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications
2. Online algorithm configuration

Intrinsic complexity

"Intrinsic complexity" of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
- VC dimension
- Pseudo-dimension

VC dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: Y \rightarrow\{-1,1\}$)
E.g., linear separators

VC dimension

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Linear separators in \mathbb{R}^{2}
$\operatorname{VCdim}(\mathcal{F}) \geq 3$

VC dimension

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Linear separators in \mathbb{R}^{2}
$\operatorname{VCdim}(\mathcal{F}) \geq 3$

$\operatorname{VCdim}(\mathcal{F}) \leq 3$

$\operatorname{VCdim}\left(\left\{\right.\right.$ Linear separators in $\left.\left.\mathbb{R}^{d}\right\}\right)=d+1$

VC dimension

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Mathematically, for $\mathcal{S}=\left\{y_{1}, \ldots, y_{N}\right\}$,

$$
\left|\left\{\left(\begin{array}{c}
f\left(y_{1}\right) \\
\vdots \\
f\left(y_{N}\right)
\end{array}\right): f \in \mathcal{F}\right\}\right|=2^{N}
$$

Pseudo-dimension

Complexity measure for real-valued function classes \mathcal{G} (Classes of functions $g: \mathcal{Y} \rightarrow[-1,1]$)
E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$, all 2^{N} above/below patterns achieved by functions in \mathcal{G}

Example: $\mathcal{G}=$ Affine functions in \mathbb{R} $\operatorname{Pdim}(\mathcal{G}) \geq 2$

Can also show that $\operatorname{Pdim}(\mathcal{G}) \leq 2$

Pseudo-dimension of \mathcal{G}

Size of the largest set $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$, all 2^{N} above/below patterns achieved by functions in \mathcal{G}

Mathematically,

$$
\left.\left\lvert\,\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{g\left(y_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{g\left(y_{N}\right) \geq z_{N}\right\}}
\end{array}\right): g \in \mathcal{G}\right\}\right.\right\}=2^{N}
$$

Sample complexity using pseudo-dim

In the context of algorithm configuration:

- $U=\left\{u_{\rho}: \rho \in \mathbb{R}^{d}\right\}$ measure algorithm performance
- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\operatorname{Pdim}(u)}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- With probability at least $1-\delta$ over $x_{1}, \ldots, x_{N} \sim \mathcal{D}, \forall \boldsymbol{\rho} \in \mathbb{R}^{d}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right]\right| \leq \epsilon
$$

Main result (informal)

Boundary functions $f_{1}, \ldots, f_{k} \in \mathcal{F}$ partition \mathbb{R}^{d} s.t. in each region, $u_{x}^{*}(\boldsymbol{\rho})=g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\operatorname{VCdim}\left(\mathcal{F}^{*}\right) \log k}{\epsilon^{2}}\right)$ implies WHP $\forall \boldsymbol{\rho}, \mid a v g$ utility over training set - exp utility $\mid \leq \epsilon$

Main result (informal)

Boundary functions $f_{1}, \ldots, f_{k} \in \mathcal{F}$ partition \mathbb{R}^{d} s.t. in each region, $u_{x}^{*}(\boldsymbol{\rho})=g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Theorem:

$$
\operatorname{Pdim}(\mathcal{U})=\tilde{O}\left(\left(\mathrm{VCdim}\left(\mathcal{F}^{*}\right)+\operatorname{Pdim}\left(\mathcal{G}^{*}\right)\right) \log k\right)
$$

Primal function class $\mathcal{U}=\left\{u_{\boldsymbol{\rho}} \mid \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}$

Next time

1 Theoretical guarantees

a. Statistical guarantees for algorithm configuration
i. Proof of main theorem
ii. Lots of applications
b. Online algorithm configuration

(2) Applied techniques

a. Graph neural networks overview

Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Part 2

Ellen Vitercik
Stanford University

How to integrate machine learning into algorithm design?

0
Algorithm configuration
How to tune an algorithm's parameters?
Algorithm selection
Given a variety of algorithms, which to use?
Algorithm design
Can machine learning guide algorithm discovery?

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of "typical" inputs
3. Find parameter setting $w /$ good avg performance over T

Key question (focus of this section):
Will that parameter setting have good future performance?

Primal \& dual classes

$u_{\boldsymbol{\rho}}(x)=$ utility of algorithm parameterized by $\boldsymbol{\rho} \in \mathbb{R}^{d}$ on input x E.g., runtime, solution quality, etc.

$$
\begin{aligned}
& \mathcal{U}=\left\{u_{\boldsymbol{\rho}}: \mathcal{X} \rightarrow \mathbb{R} \mid \boldsymbol{\rho} \in \mathbb{R}^{d}\right\} \quad \text { "Primal" function class } \\
& \text { Set of problem instances, e.g., integer programs }
\end{aligned}
$$

$u_{x}^{*}(\boldsymbol{\rho})=$ utility as function of parameters
$u_{x}^{*}(\boldsymbol{\rho})=u_{\rho}(x)$
$\mathcal{U}^{*}=\left\{u_{x}^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R} \mid x \in \mathcal{X}\right\} \quad$ "Dual" function class

Piecewise-structured functions

Dual functions $u_{x}^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are piecewise-structured

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedy
algorithm
configuration

Computational biology algorithm configuration

Voting mechanism configuration

Sample complexity

In the context of algorithm configuration:

- $U=\left\{u_{\rho}: \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}$ measure algorithm performance
- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\text { Pdim }(u)}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- With probability at least $1-\delta$ over $x_{1}, \ldots, x_{N} \sim \mathcal{D}, \forall \boldsymbol{\rho} \in \mathbb{R}^{d}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\boldsymbol{\rho}}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\boldsymbol{\rho}}(x)\right]\right| \leq \epsilon
$$

Empirical average utility Expected utility

Pseudo-dimension of \mathcal{G}

Size of the largest set $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$, all 2^{N} above/below patterns achieved by functions in \mathcal{G}

Mathematically,

$$
\left.\left\lvert\,\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{g\left(y_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{g\left(y_{N}\right) \geq z_{N}\right\}}
\end{array}\right): g \in \mathcal{G}\right\}\right.\right\}=2^{N}
$$

Main result (informal)

Boundary functions $f_{1}, \ldots, f_{k} \in \mathcal{F}$ partition \mathbb{R}^{d} s.t. in each region, $u_{x}^{*}(\boldsymbol{\rho})=g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\operatorname{VCdim}\left(\mathcal{F}^{*}\right) \log k}{\epsilon^{2}}\right)$ implies WHP $\forall \boldsymbol{\rho}, \mid a v g$ utility over training set - exp utility $\mid \leq \epsilon$

Main result (informal)

Boundary functions $f_{1}, \ldots, f_{k} \in \mathcal{F}$ partition \mathbb{R}^{d} s.t. in each region, $u_{x}^{*}(\boldsymbol{\rho})=g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Theorem:

$$
\operatorname{Pdim}(\mathcal{U})=\tilde{O}\left(\left(\mathrm{VCdim}\left(\mathcal{F}^{*}\right)+\operatorname{Pdim}\left(\mathcal{G}^{*}\right)\right) \log k\right)
$$

Primal function class $\mathcal{U}=\left\{u_{\boldsymbol{\rho}} \mid \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}$

Key lemma

Each boundary function $f: \mathbb{R}^{d} \rightarrow\{-1,1\}$ splits \mathbb{R}^{d} into 2 regions

Key lemma

Given D boundaries, how many sign patterns do they make?

$$
\left|\left\{\left(\begin{array}{c}
f_{1}(\boldsymbol{\rho}) \\
\vdots \\
f_{D}(\boldsymbol{\rho})
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

Key lemma

Given D boundaries, how many sign patterns do they make?

$$
\left|\left\{\left(\begin{array}{c}
f_{1}(\boldsymbol{\rho}) \\
\vdots \\
f_{D}(\boldsymbol{\rho})
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

Note: Sauer's lemma tells us that for any D points $\boldsymbol{\rho}_{1}, \ldots, \boldsymbol{\rho}_{D} \in \mathbb{R}^{d}$

$$
\left|\left\{\left(\begin{array}{c}
f\left(\boldsymbol{\rho}_{1}\right) \\
\vdots \\
f\left(\boldsymbol{\rho}_{D}\right)
\end{array}\right): f \in \mathcal{F}\right\}\right| \leq(e D)^{\mathrm{VCdim}(\mathcal{F})}
$$

This is where transitioning to the dual comes in handy!

Proof ideas

For any problem instances x_{1}, \ldots, x_{N} and targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$,

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{\boldsymbol{\rho}}\left(x_{1}\right)-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{\boldsymbol{\rho}}\left(x_{N}\right)-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

Switching to the dual functions,

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

Proof ideas

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

Proof ideas

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right| \leq ?
$$

The duals $u_{x_{1}}^{*}, \ldots, u_{x_{N}}^{*}$ correspond to $N k$ boundary functions in \mathcal{F} How many regions R_{1}, \ldots, R_{M} in $\mathbb{R}^{d} ? M \leq(e N k)^{\mathrm{VCdim}\left(\mathcal{F}^{*}\right)}$

Proof ideas

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in R_{j}\right\}\right| \leq ?
$$

$\forall \boldsymbol{\rho} \in R_{j}$, duals are simultaneously structured: $u_{x_{i}}^{*}(\boldsymbol{\rho})=g_{i}(\boldsymbol{\rho}), \forall i$

Proof ideas

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in R_{j}\right\}\right| \leq ?
$$

$\forall \boldsymbol{\rho} \in R_{j}$, duals are simultaneously structured: $u_{x_{i}}^{*}(\boldsymbol{\rho})=g_{i}(\boldsymbol{\rho}), \forall i$

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(g_{1}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(g_{N}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in R_{j}\right\}\right| \leq ?
$$

Proof ideas

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in R_{j}\right\}\right| \leq ?
$$

$\forall \boldsymbol{\rho} \in R_{j}$, duals are simultaneously structured: $u_{x_{i}}^{*}(\boldsymbol{\rho})=g_{i}(\boldsymbol{\rho}), \forall i$

$$
\left|\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(g_{1}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(g_{N}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in R_{j}\right\}\right| \leq \underline{(e N)^{\operatorname{Pdim}\left(G^{*}\right)}}
$$

Follows from key lemma

Proof ideas

$$
\left.\begin{array}{l}
\left\lvert\,\left\{\left(\begin{array}{c}
\operatorname{sgn}\left(u_{x_{1}}^{*}(\boldsymbol{\rho})-z_{1}\right) \\
\vdots \\
\operatorname{sgn}\left(u_{x_{N}}^{*}(\boldsymbol{\rho})-z_{N}\right)
\end{array}\right): \boldsymbol{\rho} \in \mathbb{R}^{d}\right\}\right.
\end{array}\right) \mid
$$

$\operatorname{Pdim}(\mathcal{U})$ equals largest N s.t. $2^{\mathrm{N}} \leq(e N k)^{\mathrm{VCdim}\left(\mathcal{F}^{*}\right)}(e N)^{\mathrm{Pdim}\left(\mathcal{G}^{*}\right) \text {, }}$ so $\operatorname{Pdim}(\mathcal{U})=\tilde{O}\left(\left(\operatorname{VCdim}\left(\mathcal{F}^{*}\right)+\operatorname{Pdim}\left(\mathcal{G}^{*}\right)\right) \log k\right)$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications
a. Sequence alignment
b. Greedy algorithms
c. Cutting planes
2. Online algorithm configuration

Piecewise constant dual functions

Lemma:

Utility is piecewise constant function of parameters

Sequence alignment guarantees

Theorem: Training set of size
$\tilde{O}\left(\frac{\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\mathrm{VCdim}\left(\mathcal{F}^{*}\right) \log k}{\epsilon^{2}}\right)=\tilde{O}\left(\frac{\log (\text { max seq. length })}{\epsilon^{2}}\right)$
implies WHP $\forall \boldsymbol{\rho}, \mid a v g$ utility over training set - exp utility $\mid \leq \epsilon$

Sequence alignment guarantees

implies WHP $\forall \rho, \mid a v g$ utility over training set - exp utility $\mid \leq \epsilon$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications
a. Sequence alignment
b. Greedy algorithms
c. Cutting planes
2. Online algorithm configuration

Example: MWIS

Maximum weight independent set (MWIS)

Problem instance:

- Graph $G=(V, E)$
- n vertices with weights $w_{1}, \ldots, w_{n} \geq 0$

Goal: find subset $S \subseteq[n]$

- Maximizing $\sum_{i \in S} w_{i}$
- No nodes $i, j \in S$ are connected: $(i, j) \notin E$

Example: MWIS

Greedy heuristic:

Greedily add vertices v in decreasing order of $\frac{w_{v}}{(1+\operatorname{deg}(v))}$ Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS'16]:

Greedily add nodes in decreasing order of $\frac{w_{v}}{(1+\operatorname{deg}(v))^{\rho^{\prime}}} \rho \geq 0$
[Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Example: MWIS

Given a MWIS instance $x, u_{x}^{*}(\rho)=$ weight of IS algorithm returns

Theorem [Gupta, Roughgarden, ITCS'16]:
$u_{x}^{*}(\rho)$ is piecewise-constant with at most n^{2} pieces

Example: MWIS

Given a MWIS instance $x, u_{x}^{*}(\rho)=$ weight of IS algorithm returns

- Weights $w_{1}, \ldots, w_{n} \geq 0$
- $\operatorname{deg}(i)+1=k_{i}$

Algorithm parameterized by ρ would add node 1 before 2 if:

$$
\frac{w_{1}}{k_{1}^{\rho}} \geq \frac{w_{2}}{k_{2}^{\rho}} \quad \Leftrightarrow \quad \rho \geq \log _{\frac{k_{2}}{k_{1}}} \frac{w_{2}}{w_{1}}
$$

Example: MWIS

- $\binom{n}{2}$ thresholds per instance
- Partition \mathbb{R} into regions where algorithm's output is fixed

Example: MWIS

- $\binom{n}{2}$ thresholds per instance
- Partition \mathbb{R} into regions where algorithm's output is fixed $\Rightarrow u_{\rho}(x)$ is constant

MWIS guarantees

Theorem: Training set of size

$$
\tilde{O}\left(\frac{\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\mathrm{VCdim}\left(\mathcal{F}^{*}\right) \log k}{\epsilon^{2}}\right)=\tilde{O}\left(\frac{\log n}{\epsilon^{2}}\right)
$$

implies WHP $\forall \rho$, |avg utility over training set - exp utility $\mid \leq \epsilon$

MWIS guarantees

Theorem: Training set of size

implies WHP $\forall \rho$, \mid avg utility over training set - \exp utility $\mid \leq \epsilon$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications
a. Sequence alignment
b. Greedy algorithms
c. Cutting planes
2. Online algorithm configuration

Cutting planes

Additional constraints that:

- Separate the LP optimal solution
- Tightens LP relaxation to prune nodes sooner
- Don't separate any integer point

Cutting planes

Modern IP solvers add cutting planes through the B\&B tree "Branch-and-cut"

Responsible for breakthrough speedups of IP solvers Cornuéjols, Annals of OR '07

Challenges:

- Many different types of cutting planes
- Chvátal-Gomory cuts, cover cuts, clique cuts, ...
- How to choose which cuts to apply?

Chvátal-Gomory cuts

We study the canonical family of Chvátal-Gomory (CG) cuts

CG cut parameterized by $\boldsymbol{\rho} \in[0,1)^{m}$ is $\left\lfloor\boldsymbol{\rho}^{T} A\right\rfloor \mathbf{z} \leq\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{b}\right\rfloor$

Important properties:

- CG cuts are valid
- Can be chosen so it separates the LP opt

Key challenge

Cut (typically) remains in LPs throughout entire tree search
Every aspect of tree search depends on LP guidance Node selection, variable selection, pruning, ...

Tiny change in cut can cause major changes to tree

Key lemma

Lemma: $O\left(\|A\|_{1,1}+\|\boldsymbol{b}\|_{1}+n\right)$ hyperplanes partition $[0,1)^{m}$ into regions s.t. in any one region, $\mathrm{B} \& \mathrm{C}$ tree is fixed

Tree size is a piecewise-constant function of $\boldsymbol{\rho} \in[0,1)^{m}$

Key lemma

Lemma: $O\left(\|A\|_{1,1}+\|\boldsymbol{b}\|_{1}+n\right)$ hyperplanes partition $[0,1)^{m}$ into regions s.t. in any one region, $\mathrm{B} \& \mathrm{C}$ tree is fixed

Proof idea:

- CG cut parameterized by $\boldsymbol{\rho} \in[0,1)^{m}$ is $\left\lfloor\boldsymbol{\rho}^{T} A\right\rfloor \mathbf{z} \leq\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{b}\right\rfloor$
- For any $\boldsymbol{\rho}$ and column $\boldsymbol{a}_{i},\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{a}_{i}\right\rfloor \in\left[-\left\|\boldsymbol{a}_{i}\right\|_{1},\left\|\boldsymbol{a}_{i}\right\|_{1}\right]$
- For each integer $k_{i} \in\left[-\left\|\boldsymbol{a}_{i}\right\|_{1},\left\|\boldsymbol{a}_{i}\right\|_{1}\right]$:

$$
\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{a}_{i}\right\rfloor=k_{i} \text { iff } k_{i} \leq \boldsymbol{\rho}^{T} \boldsymbol{a}_{i}<k_{i}+1 \longleftrightarrow\left\{\begin{array}{l}
o\left(\|A\|_{1,1}+n\right) \\
\text { halfspaces }
\end{array}\right.
$$

- In any region defined by intersection of halfspaces:

$$
\left(\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{a}_{1}\right\rfloor, \ldots,\left\lfloor\boldsymbol{\rho}^{T} \boldsymbol{a}_{m}\right\rfloor\right) \text { is constant }
$$

Beyond Chvátal-Gomory cuts

For more complex families, boundaries can be more complex

Cutting plane guarantees

Theorem: Training set of size

$$
\tilde{O}\left(\frac{\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\operatorname{VCdim}\left(\mathcal{F}^{*}\right) \log k}{\epsilon^{2}}\right)=\tilde{O}\left(\frac{m \log \left(\|A\|_{1,1}+\|\boldsymbol{b}\|_{1}+n\right)}{\epsilon^{2}}\right)
$$ implies WHP $\forall \boldsymbol{\rho}, \mid a v g$ utility over training set - exp utility $\mid \leq \epsilon$

Cutting plane guarantees

implies WHP $\forall \boldsymbol{\rho}, \mid a v g$ utility over training set $-\exp$ utility $\mid \leq \epsilon$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?
E.g., MWIS:

Day 1: ρ_{1}

Day 2: ρ_{2}

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Online model

Over T timesteps $t=1, \ldots, T$:

1. Learner chooses parameter setting $\boldsymbol{\rho}_{t}$
2. Nature (or adversary (0)) chooses problem instance x_{t}
3. Learner obtains reward $u_{\boldsymbol{\rho}_{t}}\left(x_{t}\right)=u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$
4. Learner observes function $u_{x_{t}}^{*}$ (full information feedback)

- Simplest setting so we'll start here
- Will look at other feedback models later (e.g., bandit)

Online model

Over T timesteps $t=1, \ldots, T$:

1. Learner chooses parameter setting $\boldsymbol{\rho}_{t}$
2. Nature (or adversary (0)) chooses problem instance x_{t}
3. Learner obtains reward $u_{\rho_{t}}\left(x_{t}\right)=u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$
4. Learner observes function $u_{x_{t}}^{*}$ (full information feedback)

Goal: Minimize regret $\max _{\boldsymbol{\rho}} \sum_{t=1}^{T} u_{\boldsymbol{\rho}}\left(x_{t}\right)-\sum_{t=1}^{T} u_{\boldsymbol{\rho}_{t}}\left(x_{t}\right)$ Ideally, $\frac{1}{T} \cdot$ (Regret) $\rightarrow 0$ as $T \rightarrow \infty$

On average, competing with best algorithm in hindsight

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has llinear regret
Round 1 :

Dual function: Utility on instance x_{1} as function of ρ

Dual function: Utility on instance x_{1}^{\prime} as function of ρ

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has llinear regret
Round 1:

Adversary chooses x_{1} or x_{1}^{\prime} with equal probability

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret
Round 1: Round 2:

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1 :

Round 2:

Repeatedly halves optimal region

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1 :

Round 2:

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2:

Repeatedly halves optimal region

Learner's expected reward: $\frac{T}{2}$ Reward of best ρ in hindsight: T Expected regret $=\frac{T}{2}$

Smoothed adversary: MWIS

Sub-linear regret is possible if adversary has a "shaky hand":

- Node weights w_{1}, \ldots, w_{n} and degrees k_{1}, \ldots, k_{n} are stochastic
- Joint density of $\left(w_{i}, w_{j}, k_{i}, k_{j}\right)$ is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, '17]; Balcan, Dick, Vitercik [FOCS'18]; Balcan et al. [UAl'20]; ...

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Dispersion

Mean adversary concentrates discontinuities near maximizer ρ^{*} Even points very close to ρ^{*} have low utility!

$u_{x_{1}}^{*}, \ldots, u_{x_{T}}^{*}: \underline{B(\mathbf{0}, 1)} \rightarrow[-1,1]$ are (w, k)-dispersed at point ρ if:

Can be generalized to any bounded subset

Dispersion

Mean adversary concentrates discontinuities near maximizer ρ^{*} Even points very close to ρ^{*} have low utility!
$u_{x_{1}}^{*}, \ldots, u_{x_{T}}^{*}: B(\mathbf{0}, 1) \rightarrow[-1,1]$ are (w, k)-dispersed at point ρ if:
ℓ_{2}-ball $B(\boldsymbol{\rho}, w)$ contains discontinuities for $\leq k$ of $u_{x_{1}}^{*}, \ldots, u_{x_{T}}^{*}$

Ball of radius w about $\boldsymbol{\rho}$ contains 2 discontinuities $\Rightarrow(w, 2)$-dispersed at $\boldsymbol{\rho}$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds
iii. Semi-bandit model

Exponentially weighted forecaster

input:
initialization:

Learning rate $\eta>0$
$U_{0}(\boldsymbol{\rho})=0$ is the constant function
for $t=1, \ldots, T$:
choose distribution \boldsymbol{q}_{t} over \mathbb{R}^{d} such that $\boldsymbol{q}_{t}(\boldsymbol{\rho}) \propto \exp \left(\eta U_{t-1}(\boldsymbol{\rho})\right)$
choose parameter setting $\boldsymbol{\rho}_{t} \sim \boldsymbol{q}_{t}$, receive reward $u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$
observe utility function $u_{x_{t}}^{*}: \mathcal{P} \rightarrow[0,1]$
update $U_{t}=U_{t-1}+u_{x_{t}}^{*}$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds
iii. Semi-bandit model

Regret

Regret $=\sum_{t=1}^{T} u_{x_{t}}^{*}\left(\boldsymbol{\rho}^{*}\right)-\sum_{t=1}^{T} u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$
Theorem: Suppse $u_{x_{1}}^{*}, \ldots, u_{x_{T}}^{*}: B(\mathbf{0}, 1) \rightarrow[0,1]$ are:

1. Piecewise L-Lipschitz
2. (w, k)-dispersed at $\boldsymbol{\rho}^{*}$

EWF has regret $O\left(\sqrt{T d \log \frac{1}{w}}+T L w+k\right)$
When is this a good bound?
For $w=\frac{1}{L \sqrt{T}}$ and $k=\tilde{O}(\sqrt{T})$, regret is $\tilde{O}(\sqrt{T d})$

Regret upper bound: Proof sketch

$$
W_{t}=\int_{B(\mathbf{0}, 1)} \exp \left(\eta U_{t}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \quad\left(U_{t}(\rho)=\sum_{\tau=1}^{t} u_{\tau}^{*}(\rho)\right)
$$

Learner's performance (ALG) is sufficiently large compared to OPT

Regret upper bound: Proof sketch

$$
W_{t}=\int_{B(\mathbf{0}, 1)} \exp \left(\eta U_{t}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \quad\left(u_{t}(\rho)=\sum_{\tau=1}^{t} u_{t}^{*}(\rho)\right)
$$

Goal: $\begin{gathered}\begin{array}{c}\text { Something in terms } \\ \text { of } \mathrm{OPT}=\sum_{t=1}^{T} u_{t}^{*}\left(\boldsymbol{\rho}^{*}\right)\end{array} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\operatorname{ALG}\left(e^{\eta}-1\right)\right) \\ \begin{array}{c}\text { Standard } \\ E W F \text { analysis }\end{array}\end{gathered}$

Regret upper bound: Proof sketch

$$
W_{t}=\int_{B(\mathbf{0}, 1)} \exp \left(\eta U_{t}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \quad\left(u_{t}(\rho)=\sum_{\tau=1}^{t} u_{t}^{*}(\rho)\right)
$$

Goal: $\begin{aligned} & \text { Something in terms } \\ & \text { of } \mathrm{OPT}=\sum_{t=1}^{T} u_{t}^{*}\left(\boldsymbol{\rho}^{*}\right)\end{aligned} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\operatorname{ALG}\left(e^{\eta}-1\right)\right)$

$$
W_{T}=\int_{B(\mathbf{0}, 1)} \exp \left(\eta \sum_{t=1}^{T} u_{t}^{*}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \geq \int_{B\left(\boldsymbol{\rho}^{*}, w\right)} \exp \left(\eta \sum_{t=1}^{T} u_{t}^{*}(\boldsymbol{\rho})\right) d \boldsymbol{\rho}
$$

Regret upper bound: Proof sketch

Goal: $\begin{aligned} & \text { Something in terms } \\ & \text { of } \mathrm{OPT}=\sum_{t=1}^{T} u_{t}^{*}\left(\boldsymbol{\rho}^{*}\right)\end{aligned} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\operatorname{ALG}\left(e^{\eta}-1\right)\right)$

$$
\begin{aligned}
W_{T} & =\int_{B(\mathbf{0}, 1)} \exp \left(\eta \sum_{t=1}^{T} u_{t}^{*}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \geq \int_{B\left(\boldsymbol{\rho}^{*}, w\right)} \exp \left(\eta \sum_{t=1}^{T} u_{t}^{*}(\boldsymbol{\rho})\right) d \boldsymbol{\rho} \\
& \geq \int_{B\left(\boldsymbol{\rho}^{*}, w\right)} \exp (\eta(\mathrm{OPT}-k-T L w)) d \boldsymbol{\rho} \\
& =\operatorname{Vol}\left(B\left(\boldsymbol{\rho}^{*}, w\right)\right) \exp (\eta(\mathrm{OPT}-k-T L w))
\end{aligned}
$$

Regret upper bound: Proof sketch

$\frac{\operatorname{Vol}\left(B\left(\boldsymbol{\rho}^{*}, w\right)\right) \exp (\eta(\mathrm{OPT}-k-T L w))}{\operatorname{Vol}(B(\mathbf{0}, 1))} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\operatorname{ALG}\left(e^{\eta}-1\right)\right)$
Rearranging and setting $\eta=\sqrt{\frac{d}{T} \log \frac{1}{w}}$:

$$
\text { Regret }=\mathrm{OPT}-\mathrm{ALG}=O\left(\sqrt{T d \log \frac{1}{w}}+T L w+k\right)
$$

Matching lower bound

Theorem: For any algorithm, exist PW-constant $u_{1}^{*}, \ldots, u_{T}^{*}$ s.t.:
Algorithm's regret is $\Omega\left(\inf _{(w, k)} \sqrt{T d \log \frac{1}{w}}+k\right)$
Inf over all (w, k)-dispersion parameters that $u_{1}^{*}, \ldots, u_{T}^{*}$ satisfy at $\boldsymbol{\rho}^{*}$

Upper bound $=O\left(\inf _{(w, k)} \sqrt{T d \log \frac{1}{w}}+k\right)$

Regret lower bound: Proof sketch

Lemma [Weed et al., COLT'16]:

Exist distributions μ_{U}, μ_{L} over $\left\{u^{(0)}, u^{(1)}\right\}$ s.t. for any algorithm,

$$
\max _{\mu_{U}, \mu_{L}} \max _{\rho \in[0,1]} \mathbb{E}\left[\sum_{t=1}^{T} u_{t}^{*}(\rho)-\sum_{t=1}^{T} u_{t}^{*}\left(\rho_{t}\right)\right] \geq \frac{\sqrt{T}}{32}
$$

$u_{1}^{*}, \ldots, u_{T}^{*}$ drawn from worse of μ_{U}, μ_{L}

Regret lower bound: Proof sketch

Lemma [Weed et al., COLT'16]:

Exist distributions μ_{U}, μ_{L} over $\left\{u^{(0)}, u^{(1)}\right\}$ s.t. for any algorithm,

$$
\max _{\mu_{U}, \mu_{L}} \max _{\rho \in[0,1]} \mathbb{E}\left[\sum_{t=1}^{T} u_{t}^{*}(\rho)-\sum_{t=1}^{T} u_{t}^{*}\left(\rho_{t}\right)\right] \geq \frac{\sqrt{T}}{32}
$$

Any $\rho>0.5$ is optimal under μ_{U}, any $\rho \leq 0.5$ is optimal under μ_{L}

Regret lower bound: Proof sketch

Worst case instance:

1. Draw $u_{1}^{*}, \ldots, u_{T-\sqrt{T}}^{*}$ from worse of μ_{U}, μ_{L} and define:

$$
\rho^{*}=\underset{\rho \in\left\{\frac{1}{4}, \frac{3}{4}\right\}}{\operatorname{argmax}} \sum_{t=1}^{T-\sqrt{T}} u_{t}^{*}(\rho)
$$

2. Define $u_{t}^{*}(\rho)=\mathbf{1}_{\left\{\left|\rho-\rho^{*}\right| \leq \frac{1}{10}\right\}}$ for $t>T-\sqrt{T}$

Note: $\rho^{*} \in \operatorname{argmax} \sum_{t=1}^{T} u_{t}^{*}(\rho)$

Regret lower bound: Proof sketch

Analysis:

- Regret $\geq \frac{\sqrt{T}}{64}$ (follows from lemma by Weed et al., [COLT'16])
- Lower bound follows from fact that $\frac{\sqrt{T}}{64}=\Omega\left(\inf _{(w, k)} \sqrt{T \log \frac{1}{w}}+k\right)$

Only last $k=\sqrt{T}$ functions have discontinuities in

$$
\left[\rho^{*}-\frac{1}{8}, \rho^{*}+\frac{1}{8}\right]
$$

$\Rightarrow u_{1}^{*}, \ldots, u_{T}^{*}$ are $\left(w=\frac{1}{8}, k=\sqrt{T}\right)$-dispersed around ρ^{*}

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds
iii. Semi-bandit model

Bandit feedback

Over T timesteps $t=1, \ldots, T$:

1. Learner chooses parameter setting $\boldsymbol{\rho}_{t}$
2. Nature (or adversary (5) chooses problem instance x_{t}
3. Learner obtains reward $u_{\rho_{t}}\left(x_{t}\right)=u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$
4. Learner only observes $u_{x_{t}}^{*}\left(\boldsymbol{\rho}_{t}\right)$ (not entire function)

Bandit feedback

Theorem: If $u_{1}^{*}, \ldots, u_{T}^{*}: B(\mathbf{0}, 1) \rightarrow[0,1]$ are:

1. Piecewise L-Lipschitz
2. (w, k)-dispersed at $\boldsymbol{\rho}^{*}$

The UCB algorithm has regret $\tilde{O}\left(\sqrt{T d\left(\frac{1}{w}\right)^{d}}+T L w+k\right)$

- If $d=1, w=\frac{1}{\sqrt[3]{T^{\prime}}}$ and $k=\tilde{O}\left(T^{2 / 3}\right)$, regret is $\tilde{O}\left(L T^{2 / 3}\right)$
- If $w=T^{\frac{d+1}{d+2}-1}, k=\tilde{O}\left(T^{\frac{d+1}{d+2}}\right)$, then regret is $\tilde{O}\left(T^{\frac{d+1}{d+2}}\left(\sqrt{d 3^{d}}+L\right)\right)$

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds
iii. Semi-bandit model

Smooth adversaries and dispersion

Adversary chooses thresholds $u_{t}^{*}:[0,1] \rightarrow\{0,1\}$
Discontinuity τ "smoothed" by adding $Z \sim N\left(0, \sigma^{2}\right)$

Lemma: WHP, $\forall w, u_{1}^{*}, \ldots, u_{T}^{*}$ are $\left(w, \tilde{O}\left(\frac{T w}{\sigma}+\sqrt{T}\right)\right)$-dispersed
Corollary: $w=\frac{\sigma}{\sqrt{T}} \Rightarrow$ Full information regret $=O\left(\sqrt{T \log \frac{T}{\sigma}}\right)$

Simple example: knapsack

Problem instance:

- n items, item i has value v_{i} and size s_{i}
- Knapsack with capacity K

Goal: find most valuable items that fit

Algorithm (parameterized by $\rho \geq 0$):
Add items in decreasing order of $\frac{v_{i}}{s_{i}^{\rho}}$
[Gupta and Roughgarden, ITCS'16]

Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:

1. Each v_{i} independent from s_{i}
2. All $\left(v_{i}, v_{j}\right)$ have κ-bounded joint density,
W.h.p., for any $\alpha \geq \frac{1}{2^{\prime}} u_{1}^{*}, \ldots, u_{T}^{*}$ are

$$
\left(\tilde{O}\left(\frac{T^{1-\alpha}}{\kappa}\right), \tilde{O}\left((\# \text { items })^{2} T^{\alpha}\right)\right) \text {-dispersed }
$$

Corollary: Full information regret $=\tilde{O}\left((\# \text { items })^{2} \sqrt{T}\right)$

More results for algorithm configuration

Under no assumptions, we show dispersion for Integer quadratic programming approximation algs

Based on semi-definite programming relaxations

- s-linear rounding [Feige \& Langberg '06]
- Outward rotations [Zwick '99]
- Both generalizations of Goemans-Williamson max-cut alg ['95]

Leverage algorithm's randomness to prove dispersion

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration
i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Semi-bandit model

- Computing the entire function $u_{t}^{*}(\rho)$ can be challenging
- Often, it's easy to compute interval in which $u_{t}^{*}\left(\rho_{t}\right)$ is constant
- E.g., in IP, simple bookkeeping with CPLEX callbacks
- Semi-bandit model: learner learns $u_{t}^{*}\left(\rho_{t}\right)$ and interval

Balcan, Dick, Pegden [UAl'20]:

- Regret bounds that are nearly as good as full info
- Introduce a more general definition of dispersion

Outline (applied techniques)

1. GNNs overview

2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

GNN motivation

Main question:

How to utilize relational structure for better prediction?

Graph neural networks: First step

- Design features for nodes/links/graphs
- Obtain features for all training data

Graph neural networks: Objective

Idea:

1. Encode each node and its neighborhood with embedding
2. Aggregate set of node embeddings into graph embedding
3. Use embeddings to make predictions

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Node message

Encoding neighborhoods: General form

$\boldsymbol{h}_{u}^{(0)}=\boldsymbol{x}_{u}$ (feature representation for node u)
In each round $k \in[K]$, for each node v :

1. Aggregate over neighbors

$$
\begin{aligned}
& \boldsymbol{m}_{\frac{N(v)}{(k)}}=\text { AGGREGATE }^{(k)}\left(\left\{\boldsymbol{h}_{u}^{(k-1)}: u \in N(v)\right\}\right) \\
& \text { Neighborhood of } v
\end{aligned}
$$

Encoding neighborhoods: General form

$\boldsymbol{h}_{u}^{(0)}=\boldsymbol{x}_{u}$ (feature representation for node u)

In each round $k \in[K]$, for each node v :

1. Aggregate over neighbors

$$
\boldsymbol{m}_{N(v)}^{(k)}=\operatorname{AGGREGATE}^{(k)}\left(\left\{\boldsymbol{h}_{u}^{(k-1)}: u \in N(v)\right\}\right)
$$

2. Update current node representation

$$
\boldsymbol{h}_{v}^{(k)}=\operatorname{COMBINE}^{(k)}\left(\boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{m}_{N(v)}^{(k)}\right)
$$

The basic GNN

[Merkwirth and Lengauer '05; Scarselli et al. '09]

$$
\boldsymbol{m}_{N(v)}=\operatorname{AGGREGATE}\left(\left\{\boldsymbol{h}_{u}: u \in N(v)\right\}\right)=\sum_{u \in N(v)} \boldsymbol{h}_{u}
$$

$\operatorname{COMBINE}\left(\boldsymbol{h}_{v}, \boldsymbol{m}_{N(v)}\right)=\sigma\left(W_{\text {self }} \boldsymbol{h}_{v}+W_{\text {neigh }} \boldsymbol{m}_{N(v)}+\boldsymbol{b}\right)$

[^0]
Aggregation functions

$$
\boldsymbol{m}_{N(v)}=\operatorname{AGGREGATE}\left(\left\{\boldsymbol{h}_{u}: u \in N(v)\right\}\right)=\bigoplus_{\frac{u \in N(v)}{\square}} \boldsymbol{h}_{u}
$$

Other element-wise aggregators, e.g.: Maximization, averaging

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Weight sharing

Use the same aggregation functions for all nodes

INPUT GRAPH

Can generate encodings for previously unseen nodes \& graphs!

Next time

1. Neural algorithmic alignment GNNs for discrete optimization
2. Reinforcement learning overview
3. Learning greedy heuristics with RL
4. Integer programming with GNNs

Machine learning for algorithm design: Theoretical guarantees and applied frontiers

Part 3

Ellen Vitercik
Stanford University

Outline (applied techniques)

1. GNNs overview (recap)

2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Graph neural networks: Objective

Idea:

1. Encode each node and its neighborhood with embedding
2. Aggregate set of node embeddings into graph embedding
3. Use embeddings to make predictions

Encoding neighborhoods: General form

$\boldsymbol{h}_{u}^{(0)}=\boldsymbol{x}_{u}$ (feature representation for node u)

In each round $k \in[K]$, for each node v :

1. Aggregate over neighbors

$$
\boldsymbol{m}_{N(v)}^{(k)}=\operatorname{AGGREGATE}^{(k)}\left(\left\{\boldsymbol{h}_{u}^{(k-1)}: u \in N(v)\right\}\right)
$$

2. Update current node representation

$$
\boldsymbol{h}_{v}^{(k)}=\operatorname{COMBINE}^{(k)}\left(\boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{m}_{N(v)}^{(k)}\right)
$$

Outline (applied techniques)

1. GNNs overview

2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Problem-solving approaches

+ Operate on raw inputs
+ Generalize on noisy conditions
+ Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

+ Trivially strong generalization
+ Compositional (subroutines)
+ Guaranteed correctness
+ Interpretable operations
- Input must match spec
- Not robust to task variations

Is it possible to get the best of both worlds?

Previous work

Previous work:

- Shortest path [Graves et al. '16; Xu et al., '19]
- Traveling salesman [Reed and De Freitas '15]
- Boolean satisfiability [Vinyals et al. '15; Bello et al.,'16; ...]
- Probabilistic inference [Yoon et al.,'18]

Ground-truth solutions used to drive learning
Model has complete freedom mapping raw inputs to solutions

Neural graph algorithm execution

Key observation: Many algorithms share related subroutines E.g. Bellman-Ford,BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution

- Learn several algorithms simultaneously
- Provide intermediate supervision signals

Driven by how a known classical algorithm would process the input

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Breadth-first search

- Source node s
- Initial input $x_{i}^{(1)}= \begin{cases}1 & \text { if } i=s \\ 0 & \text { if } i \neq s\end{cases}$
- Node is reachable from s if any of its neighbors are reachable:

$$
x_{i}^{(t+1)}= \begin{cases}1 & \text { if } x_{i}^{(t)}=1 \\ 1 & \text { if } \exists j \text { s.t. }(j, i) \in E \text { and } x_{j}^{(t)}=1 \\ 0 & \text { else }\end{cases}
$$

- Algorithm output at round $t: y_{i}^{(t)}=x_{i}^{(t+1)}$

Bellman-Ford (shortest path)

- Source node s
- Initial input $x_{i}^{(1)}=\left\{\begin{array}{cl}0 & \text { if } i=s \\ \infty & \text { if } i \neq s\end{array}\right.$
- Node is reachable from s if any of its neighbors are reachable Update distance to node as minimal way to reach neighbors

$$
x_{i}^{(t+1)}=\min \left\{x_{i}^{(t)}, \min _{(j, i) \in E} x_{j}^{(t)}+e_{j i}^{(t)}\right\}
$$

Bellman-Ford: Message passing

Key idea (roughly speaking): $\operatorname{Train} \mathrm{GNN}$ so that $\boldsymbol{h}_{u}^{(t)} \approx x_{u}^{(t)}, \forall t$ (Really, so that a function of $\boldsymbol{h}_{u}^{(t)} \approx x_{u}^{(t)}$)

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Shortest-path predecessor prediction

Improvement of max-aggregator increases with size It aligns better with underlying algorithm [Xu et al., ICLR'20]

Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously

- At each step t, concatenate relevant $x_{i}^{(t)}$ and $\boldsymbol{y}_{i}^{(t)}$ values

Comparisons

- (no-reach): Learn Bellman-Ford alone
- Doesn't simultaneously learn reachability
- (no-algo):
- Don't supervise intermediate steps
- Learn predecessors directly from input $x_{i}^{(1)}$

Shortest-path predecessor prediction

- (no-reach) results: positive knowledge transfer
- (no-algo) results: benefit of supervising intermediate steps

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Key question

Key question in neural algorithmic alignment:

If we're just teaching a NN to imitate a classical algorithm... Why not just run that algorithm?

Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Natural inputs

Abstractifying the core problem

- Assume we have real-world inputs
...but algorithm only admits abstract inputs
- Could try manually converting from one input to another

Attacking the core problem

- Alternatively, replace human feature extractor with NN
- Still apply same combinatorial algorithm
- Issue: algorithms typically perform discrete optimization
- Doesn't play nicely with gradient-based optimization of NNs

Natural inputs

\qquad

Abstract inputs

Abstract outputs

Algorithmic bottleneck

Second (more fundamental) issue: data efficiency

- Real-world data is often incredibly rich
- We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar Assumes it is perfect!

If there's insufficient training data to estimate the scalars:

- Alg will give a perfect solution
- ...but in a suboptimal environment

Neural algorithmic pipeline

Encoder network \boldsymbol{f}

- E.g., makes sure input is in correct dimension for next step

Neural algorithmic pipeline

Processor network P

- Graph neural network
- Run multiple times (termination determined by a NN)

Neural algorithmic pipeline

Decoder network \boldsymbol{g}

- Transform's GNNs output into algorithmic output

Neural algorithmic pipeline

1. On abstract inputs, learn encode-process-decode functions

Neural algorithmic pipeline

After training on abstract inputs, processor P :

1. Is aligned with computations of target algorithm
2. Admits useful gradients
3. Operates over high-dim latent space (better use of data)

Neural algorithmic pipeline

2. Set up encode-decode functions for natural inputs/outputs

Neural algorithmic pipeline

3. Learn parameters using loss that compares $\tilde{g}(P(\tilde{f}(x)))$ to y

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Additional research

Lots of research in the past few years! E.g.:

- How to achieve algorithmic alignment \& theory guarantees
- Xu et al., ICLR'20; Dudzik, Veličković, NeurIPS'22
- CLRS benchmark
- Sorting, searching, dynamic programming, graph algorithms, etc.
- Veličković et al. ICML'22; Ibarz et al. LoG'22; Bevilacqua et al. ICML'23
- Primal-dual algorithms
- Numeroso et al., ICLR'23

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Learner interaction with environment

Markov decision processes

S : set of states (assumed for now to be discrete)
A : set of actions
Transition probability distribution $P\left(s^{\prime} \mid s, a\right)$
Probability of entering state s^{\prime} from state s after taking action a
Reward function $R: S \rightarrow \mathbb{R}$
Goall: Policy $\pi: S \rightarrow A$ that maximizes total (discounted) reward

Policies and value functions

Policy is a mapping from states to actions $\pi: S \rightarrow A$

Value function for a policy:

Expected sum of discounted rewards

$$
\begin{aligned}
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right)\left|s_{0}=s, a_{t}=\pi\left(s_{t}\right), s_{t+1}\right| s_{t}, a_{t} \sim P\right] \\
\text { Discount factor }
\end{aligned}
$$

Optimal policy and value function

Optimal policy π^{\star} achieves the highest value for every state

$$
V^{\pi^{\star}}(s)=\max _{\pi} V^{\pi}(s)
$$

Value function is written $V^{\star}=V^{\pi^{\star}}$

Several different ways to find π^{\star}

- Value iteration
- Policy iteration

Challenge of RL

$\operatorname{MDP}(S, A, P, R):$

- S : set of states (assumed for now to be discrete)
- A: set of actions
- Transition probability distribution $P\left(s_{t+1} \mid s_{t}, a_{t}\right)$
- Reward function $R: S \rightarrow \mathbb{R}$

RL twist: We don't know P or R, or too big to enumerate

Q-learning

Q functions:

Like value functions but defined over state-action pairs

$$
Q^{\pi}(s, a)=R(s)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) Q^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)
$$

I.e., Q function is the value of:

1. Starting in state s
2. Taking action a
3. Then acting according to π

Q-learning

$$
\begin{aligned}
Q^{\star}(s, a) & =R(s)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q^{\star}\left(s^{\prime}, a^{\prime}\right) \\
& =R(s)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{\star}\left(s^{\prime}\right)
\end{aligned}
$$

Q^{\star} is the value of:

1. Starting in state s
2. Taking action a
3. Then acting optimally

Q-learning

(High-level) Q-learning algorithm

 initialize $\widehat{Q}(s, a) \leftarrow 0, \forall s, a$ repeatObserve current state s and reward r
Take action $a=\operatorname{argmax} \widehat{Q}(s, \cdot)$ and observe next state s^{\prime} Improve estimate \hat{Q} based on s, r, a, s^{\prime}

Can use function approximation to represent \widehat{Q} compactly

$$
\hat{Q}(s, a)=f_{\theta}(s, a)
$$

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

RL for combinatorial optimization

Tons of research in this area

Travelling salesman
 Bello et al., ICLR'17; Dai et al., NeurIPS'17;
 Nazari et al., NeurlPS'18; ..

Maximum cut

Dai et al., NeurlPS'17; Cappart et al., AAAl'19; Barrett et al., AAAl'20;

Bin packing
 Hu et al., '17; Laterre et al.,'18; Cai et al., DRL4KDD'19; Li et al., '20;

Minimum vertex cover

Dai et al., NeurlPS'17; Song et al., UAI'19;

This section: Example of a pioneering work in this space

Overview

Goal: use RL to learn new greedy strategies for graph problems Feasible solution constructed by successively adding nodes to solution

Input: Graph $G=(V, E)$, weights $w(u, v)$ for $(u, v) \in E$

RL state representation: Graph embedding

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
i. Examples: Min vertex cover and max cut
ii. RL formulation
iii. Experiments
5. Integer programming with GNNs

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum
Scoring function that guides greedy algorithm

Maximum cut

Find partition ($S, V \backslash S$) of nodes that maximizes

$$
\sum_{(u, v) \in C} w(u, v)
$$

where $C=\{(u, v) \in E: u \in S, v \notin S\}$

$$
\text { If } w(u, v)=1 \text { for all }(u, v) \in E:
$$

Maximum cut

Find partition ($S, V \backslash S$) of nodes that maximizes

$$
\sum_{(u, v) \in C} w(u, v)
$$

where $C=\{(u, v) \in E: u \in S, v \notin S\}$
Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Maximum cut

Find partition ($S, V \backslash S$) of nodes that maximizes

$$
\sum_{(u, v) \in C} w(u, v)
$$

where $C=\{(u, v) \in E: u \in S, v \notin S\}$
Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
i. Example: Min vertex cover and max cut
ii. RL formulation
iii. Experiments
5. Integer programming with GNNs

Reinforcement learning formulation

State:

- Goal: encode partial solution $S=\left(v_{1}, v_{2}, \ldots, v_{|S|}\right), v_{i} \in V$
E.g., nodes in independent set, nodes on one side of cut

Reinforcement learning formulation

State:

- Goal: encode partial solution $S=\left(v_{1}, v_{2}, \ldots, v_{|S|}\right), v_{i} \in V$
- Use GNN to compute graph embedding $\boldsymbol{\mu}$

Initial node features $x_{v}= \begin{cases}1 & \text { if } v \in S \\ 0 & \text { else }\end{cases}$
Action: Choose vertex $v \in V \backslash S$ to add to solution

Transition (deterministic): For chosen $v \in V \backslash S$, set $x_{v}=1$

Reinforcement learning formulation

Reward: $r(S, v)$ is change in objective when transition $S \rightarrow(S, v)$
Policy (deterministic): $\pi(v \mid S)= \begin{cases}1 & \text { if } v=\underset{v^{\prime} \notin S}{\operatorname{argmax}} \hat{Q}\left(\boldsymbol{\mu}, v^{\prime}\right) \\ 0 & \text { else }\end{cases}$

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
i. Example: Min vertex cover and max cut
ii. RL formulation
iii. Experiments
5. Integer programming with GNNs

Min vertex cover

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

2-approximation algorithm

Greedy algorithm from first few slides

Max cut

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

Goemans-Williamson algorithm

Greedy algorithm from first few slides

TSP

Uniform random points on 2-D grid

Runtime comparisons

Min vertex cover visualization

Nodes seem to be selected to balance between:

- Degree
- Connectivity of the remaining graph

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs

Variable selection policy (VSP)

Better branching order than $x_{1}, x_{2}, x_{3}, x_{4}$?

Variable selection policy (VSP)

Better branching order than $x_{1}, x_{2}, x_{3}, x_{4}$? E.g., $x_{4}, x_{3}, x_{1}, x_{2}$

Variable selection policy (VSP)

Chooses variables to branch on on-the-fly Rather than pre-defined order

Variable selection policy (VSP)

At node j with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$

VSP example:

Branch on the variable x_{i} that maximizes

$$
\max \left\{z(j)-z_{i}^{+}(j), 10^{-6}\right\} \cdot \max \left\{z(j)-z_{i}^{-}(j), 10^{-6}\right\}
$$

If score was $\left(z(j)-z_{i}^{+}(j)\right)\left(z(j)-z_{i}^{-}(j)\right)$ and $z(j)-z_{i}^{+}(j)=0$: would lose information stored in $z(j)-z_{i}^{-}(j)$

Strong branching

Challenge: Computing $z_{i}^{-}(j), z_{i}^{+}(j)$ requires solving a lot of LPs

- Computing all LP relaxations referred to as strong-branching
- Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching
Khalil et al. [AAAI'16], Alvarez et al. [INFORMS JoC'17], Hansknecht et al. [arXiv'18]
This paper: using a GNN

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs
i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Problem formulation

Goal: learn a policy $\pi\left(a_{t} \mid s_{t}\right)$

Probability of branching on variable a_{t} when solver is in state s_{t}

Approach (imitation learning):

- Run strong branching on training set of instances
- Collect dataset of (state, variable) pairs $S=\left\{\left(s_{i}, a_{i}^{*}\right)\right\}_{i=1}^{N}$
- Learn policy $\pi_{\boldsymbol{\theta}}$ with training set S

State encoding

State s_{t} of $\mathrm{B} \& \mathrm{~B}$ encoded as a bipartite graph with node and edge features

Constraints Variables

$$
\begin{array}{lll}
\max & 9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4} \\
\mathrm{s.t.} & 6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10 & \left(c_{1}\right) \\
& x_{3}+x_{4} \leq 10 & \left(c_{2}\right) \\
& -x_{1}+x_{3} \leq 0 & \left(c_{3}\right) \\
& -x_{2}+x_{4} \leq 0 & \left(c_{4}\right) \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} &
\end{array}
$$

Cons

State encoding

State s_{t} of $\mathrm{B} \& \mathrm{~B}$ encoded as a bipartite graph with node and edge features

- Edge feature: constraint coefficient
- Example node features:
- Constraints:
- Cosine similarity with objective
- Tight in LP solution?
- Variables:
- Objective coefficient
- Solution value equals upper/lower bound?

Constraints Variables

GNN structure

1. Pass from variables \rightarrow constraints

Constraints
 Variables

GNN structure

1. Pass from variables \rightarrow constraints

$$
\boldsymbol{c}_{i} \leftarrow f_{C}\left(\boldsymbol{c}_{i}, \sum_{j:(i, j) \in E} g_{C}\left(\boldsymbol{c}_{i}, \boldsymbol{v}_{j}, \boldsymbol{e}_{i j}\right)\right)
$$

2. Pass from constraints \rightarrow variables

$$
\boldsymbol{v}_{j} \leftarrow f_{V}\left(\boldsymbol{v}_{j}, \sum_{i:(i, j) \in E} g_{V}\left(\boldsymbol{c}_{i}, \boldsymbol{v}_{j}, \boldsymbol{e}_{i j}\right)\right)
$$

Constraints Variables

GNN structure

3. Compute distribution over variables

Constraints Variables

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs
i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Reliability pseudo-cost branching (RPB)

Rough idea:

- Goal: estimate $z(j)-z_{i}^{+}(j)$ w/o solving the LP with $x_{i}=1$
- Estimate $=$ avg change after setting $x_{i}=1$ elsewhere in tree

This is the "pseudo-cost"

- "Reliability": do strong branching if estimate is "unreliable" E.g., early in the tree

Default branching rulle of SCIP (leading open-source solver):

$$
\begin{aligned}
& \max \left\{\frac{\widetilde{\Delta}_{i}^{+}(j)}{\mid}, 10^{-6}\right\} \cdot \max \left\{\underline{\widetilde{\Delta}_{i}^{-}(j)}, 10^{-6}\right\} \\
& \text { Estimate of } z(j)-z_{i}^{+}(j) \\
& \text { Estimate of } z(j)-z_{i}^{-}(j)
\end{aligned}
$$

Learning to rank approaches

- Predict which variable strong branching would rank highest
- Using a linear modell instead of a GNN
- Khalil et al. [AAAI'16]:

Use learning-to-rank algorithm SVMrank [Joachims, KDD'06]

- Hansknecht et al. [arXiv'18] Use learning-to-rank alg lambdaMART [Burges, Learning'10]

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs
i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Set covering instances

Always train on "easy" instances

Model	1000 columns, 500 rows			1000 columns, 2000 rows		
	Time	Easy	Nodes	Time	Hard	Nodes
		Wins			Wins	
FSB	$17.30 \pm 6.1 \%$	$0 / 100$	$17 \pm 13.7 \%$	$3600.00 \pm 0.0 \%$	$0 / 0$	
RPB	$8.98 \pm 4.8 \%$	0/100	$\mathbf{5 4} \pm 20.8 \%$	$1677.02 \pm 3.0 \%$	4/ 65	$6547299 \pm 4.9 \%$
TREES	$9.28 \pm 4.9 \%$	0/100	$187 \pm 9.4 \%$	$2869.21 \pm 3.2 \%$	0/ 35	$3559013 \pm 9.3 \%$
SVmRank	$8.10 \pm 3.8 \%$	1/100	$165 \pm 8.2 \%$	$2389.92 \pm 2.3 \%$	0/ 47	$4742120 \pm 5.4 \%$
LMART	$7.19 \pm 4.2 \%$	14 / 100	$167 \pm 9.0 \%$	$2165.96 \pm 2.0 \%$	$0 / 54$	$5445319 \pm 3.4 \%$
GCNN	$6.59 \pm 3.1 \%$	85 / 100	$134 \pm 7.6 \%$	$1489.91 \pm 3.3 \%$	66 / 70	$7029981 \pm 4.9 \%$

Set covering instances

Set covering instances

- GNN is faster than SCIP default VSP (RPB)
- Performance generalizes to llarger instances
- Similar results for auction design \& facility location problems

Model	Easy			Hard					
	Time	Wins	Nodes	Time		Wi		No	
FSB	$17.30 \pm 6.1 \%$	0/100	$17 \pm 13.7 \%$	$3600.00 \pm$	0.0\%	$0 /$	0	/a	n/a \%
RPB	$8.98 \pm 4.8 \%$	0/100	$54 \pm 20.8 \%$	$1677.02 \pm$	3.0\%	$4 /$		7299	4.9\%
TREES	$9.28 \pm 4.9 \%$	0/100	$187 \pm 9.4 \%$	$2869.21 \pm$	3.2\%	$0 /$		9013	9.3\%
SVmRANK	$8.10 \pm 3.8 \%$	1/100	$165 \pm 8.2 \%$	$2389.92 \pm$	2.3\%		47	2120	5.4\%
LMART	$7.19 \pm 4.2 \%$	14/100	$167 \pm 9.0 \%$	$2165.96 \pm$	2.0\%			5319	3.4\%
GCNN	$6.59 \pm 3.1 \%$	85 / 100	$134 \pm 7.6 \%$	$1489.91 \pm$	3.3\%		70	29981	+ 4.9%

Max independent set instances

RPB is catching up to GNN on MIS instances

Model	Time	Easy Wins	Nodes	Time	Hard Wins	Nodes
FSB	$23.58 \pm 29.9 \%$	9/100	$7 \pm 35.9 \%$	$3600.00 \pm 0.0 \%$	$0 /$	n / a 土n/a \%
RPB	$8.77 \pm 11.8 \%$	7/100	$20 \pm 36.1 \%$	045.61 $\pm 18.3 \%$	$22 / 42$	$2675 \pm 24.0 \%$
TREES	$10.75 \pm 22.1 \%$	1/100	$76 \pm 44.2 \%$	$3565.12 \pm 1.2 \%$	0/ 3	$38296 \pm 4.1 \%$
SVmrank	$8.83 \pm 14.9 \%$	2/100	$46 \pm 32.2 \%$	$2902.94 \pm 9.6 \%$	1/18	$6256 \pm 15.1 \%$
LMART	$7.31 \pm 12.7 \%$	$30 / 100$	$52 \pm 38.1 \%$	$3044.94 \pm 7.0 \%$	0/12	$8893 \pm 3.5 \%$
GCNN	$\mathbf{6 . 4 3} \pm 11.6 \%$	51 / 100	$43 \pm 40.2 \%$	$2024.37 \pm 30.6 \%$	$25 / 29$	$2997 \pm 26.3 \%$

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Reinforcement learning overview
4. Learning greedy heuristics with RL
5. Integer programming with GNNs
i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Additional research

CPU-friendly approaches
Gupta et al., NeurlPS'20

Bipartite representation inspired many follow-ups
Nair et al., '20; Sonnerat et al., '21; Wu et al., NeurlPS'21; Huang et al. ICML'23;
Survey on Combinatorial Optimization \& Reasoning w/ GNNs:
Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Conclusions and future directions

Overview

1 Theoretical guarantees

a. Statistical guarantees for algorithm configuration
i. Broadly applicable theory for deriving generalization guarantees
ii. Proved using connections between primal and dual classes
b. Online algorithm configuration
a. Impossible in the worst cases
b. Introduced dispersion to provide no-regret guarantees

Overview

(1) Theoretical guarantees

a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

(2) Applied techniques

a. Graph neural networks
i. Neural algorithmic alignment
ii. GNNs for variable selection in branch-and-bound
b. Reinforcement learning
i. Design new greedy heuristics for NP-hard problems

Future work: Tighter statistical bounds

WHP $\forall \boldsymbol{\rho}$, |avg utility over training set - exp utility $\mid \leq \epsilon$ given training set of size $\tilde{O}\left(\frac{1}{\epsilon^{2}}\left(\operatorname{Pdim}\left(\mathcal{G}^{*}\right)+\operatorname{VCdim}\left(\mathcal{F}^{*}\right) \log k\right)\right)$

k is often exponential
Can lead to large bounds
I expect this can sometimes be avoided! Would require more information about duals

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems... can sometimes lead to better single-task performance
- E.g., training reachability and shortest-paths (grey line) v.s. just training shortest-paths (yellow line)

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems... can sometimes lead to better single-task performance
- Can we understand theoretically why this happens?
- For which sets of algorithms can we expect knowledge transfer?

Future work: Size generalization

Machine-learned algorithms can scalle to larger instances
Applied research: Dai et al., NeurIPS'17; Veličković, et al., ICLR'20; ...
Goal: eventually, solve problems no one's ever been able to solve
However, size generalization is not immediate! It depends on:

- The machine-learned algorithm

Is the algorithm scale sensitive?

Example [Xu et al., ICLR'21]:

- Algorithms represents by GNNs do generalize
- Algs represented by MLPs don't generalize across size

Future work: Size generalization

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurlPS'17; Veličković, et al., ICLR'20;
Goal: eventually, solve problems no one's ever been able to solve
However, size generalization is not immediate! It depends on:

- The machine-learned algorithm

Is the algorithm scale sensitive?

- The problem instances

As size scales, what features must be preserved?

Future work: Size generalization

Can you:

1. Shrink a set of big integer programs graphs
2. Learn a good algorithm on the small instances
3. Apply what you learned to the big instances?

Future work: ML as a toolkit for theory

Which algorithm classes to optimize over?

Classical algorithm design \& analysis

```
Data-driven algorithm design
```

Q: Why are some machine-learned algs so dominant?
E.g., Dai et al. [NeurlPS'17] write that their RL alg discovered:
"New and interesting" greedy strategies for MAXCUT and MVC "which intuitively make sense but have not been analyzed before," thus could be a "good assistive tool for discovering new algorithms."

[^0]: Non-linearity (e.g. tanh or ReLU)

